@

Elkhart Lake Signing and
Manifesting Guide

User Guide

Revision 1.21
January 2021

Intel Confidential

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could
result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY
OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING
IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.
Copyright © 2021, Intel Corporation. All rights reserved.

2 Intel Confidential User Guide

http://www.intel.com/design/literature.htm

Contents

User Guide

L@ A= Y= PP 6
1.1 Tools Used In This DoOCUmMENTcovviiiiiiiiiiiiiien e e 6
1.2 B IC=1 211 o] o T Y 6
1.3 Pre-RequUISItes ..o 7
INErOdUCEION «. e e 8
2.1 Why is signing important?.......ccoviiiiiiiiiic e 8
2.2 Who performs the signing?......ccocoiiiiiiiiiiiiiic s 8
2.3 When is signing performed?coiiiiiiiiii e 8
Theory Of SIgNINgG ..ovuiiiiii e rea 9
3.1 Cryptography BasiCS.....c.viieiiiiiiiiiiiii e e 9
3.2 KEY SECUNIEY ettt e 9
3.3 Signed Components and Their Structurecocvcvvvvieininnnn. 10
3.4 OEM Key Manifest (OEM KM)iuiuiiiiiiiieneneeeeee e eeeeens 11
3.5 Opting out of the OEM KMviiiiiiiiiiiiiceeeeee e 12
3.6 Stitching a Flashable Imageccoovviiiiiiiiiii 12
3.7 | 2 o T o [T RPN 13
3.7.1 BOOt FIOW Orderooviiiiiiiiiiii e neenaenaennens 13
3.7.2 OEM KM PrecedenCe.....ccvvrvieiireiiiiieiiennnennennennennes 14
3.7.3 Signature Authentication during Boot................... 15
What Can Be OEM Signedcoiviiiiiiiii et e e 17
HOW £0 SigN oo e 18
5.1 High Level Signing of OEM COmMpoNents......c.cocvvvevernnnnnnnnnes 18
5.2 Quick List of Signing Commandsccovveiiiiiiieieiiiiienneensn 18
5.3 Extended Signing Commands, Detailed Instructions and MEU
ADIIEIES vt 21
5.3.1 Additional ways to generate public key hash 21
5.3.2 Versioning of Signed Components..........ccovuvennns 22
5.4 Intel® Manifest Extension Utility (Intel® MEU)cccvvvvnnnnn. 24
54.1 LS T 24
5.4.2 EXamMIPIES. i 26
1YY K 1 35
6.1 Descriptor SIgNiNG......coeiiieiiiii s 35
6.2 Signing components added to FITccoviviiiiiiiiiiie e 36
6.3 FIT Manifest Version Validation..........ccoiiiiiiiiiiiiiiiiiiiiiens 37
8 37
Production Signing ...c.ooiiiii i e 38
7.1 Production Signing High-Levelccooiiiiiiiiiiins 38
7.2 EXPOrt Manifests ...oouiriieiiiii e 38
7.3 Manifest StrUCtUIES.vvv i s 39
7.3.1 Manifest Headerccviviiiiiiiiiccec e 39
7.3.2 Signed Package Info Extension...........c.covvvennnnne. 41
7.3.3 Metadata extensionscocvvvvviiiiiiii e 42
7.3.4 OEM Key Manifest.....cocvvviiiiiiiicineineen s 43
7.4 Import Manifest ... 44

Intel Confidential 3

Common Bring Up Issues and Troubleshooting Table...................... 45
8.1 Common Bring Up Issues and Troubleshooting Table........... 45

Intel Confidential User Guide

Revision History

Revision
Number

Description

Revision
Date

0.1

Based off-of ICL

Nov 2018

0.2

Rewrote chapters
Reordered document
Added theory of signing
Updated screenshots

Jan 2019

0.7

Reordered chapters even more, added and
removed some chapters.

May 2019

0.72

Manifest header offset alignment

And correction regarding iUnit signing - only for
resigning Intel component.

Aug 2019

0.8

Added the words “or later” following the openssl
version listed.

Nov 2019

1.0

HW Anti-Rollback

Empty OEM KM

What can be OEM signed
Descriptor Signing

April 2020

1.1

Updated wording for empty OEM KM
Change guide name to include the word “User”

June 2020

1.2

Added OemAttestationManifest usage in OEM KM

Added “Cancel OEM signing” debug token
capability

July 2020

1.21

Updated Intel® MEU screen captures

Updated OemUnlockToken XML with singleboot
Token Flag

Updated MEU binlist
Added Key revocation usage to Intel® MEU
Updated Descriptor Siging usage in Intel® FIT

Removed invalid use case of Intel® MFIT
manifet version validation

January 2021

User Guide

Intel Confidential

intel)

Overview

Overview

1.1

1.2

This document describes the manifesting and signing of OEM
components, enabling them to be included in the IFWI image for
Elkhart Lake platforms using Intel® CSE 15.40 FW.

The goal of this guide is to train the user to:

1. Manifest and sign OEM components

2. Include data on all signatures in the IFWI image

3. Build the final flashable production IFWI image

4. Configurations and options available in the signing process

This guide also offers theory and background for signing and IP loading
flow.

There may be components mentioned in this document which are not
POR for EHL.

Tools Used In This Document

The following tools are referenced this document:

e Intel® Flash Image Tool (Intel® FIT): in Intel® ME FW Kit

e Intel® Manifest Extension Utility (Intel® MEU): in Intel® ME FW Kit
e OpenSSL: Open Source

Terminology
Term Description

EHL Elkhart Lake

Intel® FIT Intel® Flash Image Tool

Intel® MEU Intel® Manifest Extension Utility

IFWI Integrated Firmware Image (System FW Image on SPI)

OEM KM OEM Key Manifest (containing OEM public key hashes to
authenticate OEM signed FW components).

ROT KM Root of Trust Key Manifest (containing Intel public key
hashes to authenticate Intel signed FW components)

ISH Integrated Sensor Hub

EOM End of Manufacturing

FW Firmware

1UP Independently Updatable Partition

Intel Confidential User Guide

Overview

1.3

User Guide

Pre-Requisites

The user should download and install the Latest Intel® ME FW kit from
the following location: https://platformsw.intel.com/

The following guides, found in the ME FW kit, can offer background for
processes and tools discussed in this document:

e EHL Firmware Bring-Up Guide: Describes the overall platform bring-
up procedure.

e EHL System Tools User Guide: Offers further detail regarding usage
of all FW manufacturing tools.

Intel Confidential

https://platformsw.intel.com/

intel.

Introduction

2 Introduction

2.1 Why is sighing important?

When a platform boots, it is critical to ensure the FW is loaded from a
trusted source.

Signing of FW components ensures that the owner of the component
(OEM/Intel) authorizes the loading and running of their component on
the platform. This is done by establishing a chain of trust from the
hardware of the platform itself, where hardware authenticates a key
manifest, and the key manifest is used to then authenticate the FW
components.

Platform Chain of trust extended from HW to OEM components

OEM Public
Key Hash in OEM. Key OEM Load
Manifest Components
Component

HW FPF

2.2 Who performs the signing?

Intel signs all FW components to be loaded by CSME. OEMs may add
or replace capabilities for several components, such as ISH and Audio.
In order to load the OEM components and use their capabilities,
signing of the component and an OEM KM is required.

If the OEM wishes to only use the Intel provided components, the OEM
is not required to sign anything, and OEM KM is not created.

2.3 When is signing performed?

Signing of components and creation and signing of OEM KM, is a step
performed in the R&D facilities pre-manufacturing. At the time of
manufacturing, the ready signed OEM components and OEM KM are
entered into the image creation tool (FIT) and the key used to
authenticate the OEM KM will be burned to the fuses. This will be
discussed in greater detail below.

8 Intel Confidential User Guide

Theory of Signing

Theory of Signing

3.1

3.2

User Guide

This chapter discusses the theory of signed structures, signing
components and how authentication is performed during boot flow.
For technical instructions on how to use the tools to sign your
components, please refer to chapter 4.

Cryptography Basics

Signing flow, and establishing a chain of trust, is based on the
concepts of cryptography. Two cryptographic functions are used in the
process:

1. Hashing

A one directional mathematical operation which is simple to
calculate, yet computationally difficult to reverse. It will produce
completely different outputs even when input data is similar. For
EHL, the hashing function used is SHA-384, which is from the
SHA2 family of cryptographic functions.

2. Data Encryption using RSA Algorithm

Using a private and public key pair which are mathematically
linked, data can be encrypted and then decrypted (reverse
encryption). The private key is used to encrypt the data, and then
public key can be used to decrypt it back to the original source.

In the signing process of components, the data being encrypted is
the hash of the original binary component, and the public key is
used to decrypt it back to its original format during verification. It
is important for the private key to be stored securely, so that only
the original body can perform the encryption. Public key is
available to the public, since once it is used to decrypt the
signature, the output is compared with the binary hash present in
the component. They will only match if the public key
mathematically corresponds perfectly to the private key used
during encryption.

For EHL, the private key size is RSA-3072.

Key Security

Although the same key may be used for signing each entry in the OEM
Key Manifest and the key manifest itself, Intel recommends using
separate key pairs for signing each component. Using a single key for
signing multiple components poses a level of risk, since if the key is
compromised, the entire package is compromised.

Production private keys should always be stored securely and kept
secret to provide a robust secure boot flow and firmware load. If the
keys escape to 3™ parties, they may be used to create and sign
unofficial versions of the binaries which can then be loaded onto the
platform.

Intel Confidential 9

intel)

It is important to allowing restricted/audited access to the keys in
order to resign components and build updated images for the platform.

Theory of Signing

For example, MEU could be run on a secure server which houses the
keys or OEMs may use the MEU export function for production signing
if MEU does not run on the OEM’s signing server (see production
signing chapter).

OEMs should manage separate sets of keys for development signing
and production signing of images. This will ensure that the OEM KM
and components run on production platforms is of production quality.

3.3 Signed Components and Their Structure

The OEM may create and sign ISH to replace the capabilities of the
Intel ISH, as well as create and sign an Audio component to extend
the Audio capability provided by Intel. Intel iUnit may be re-signed
with OEM key, but OEM may not create their own iUnit component.
Each one of these is independent. In addition, there are OEM signed
binaries that use the signing chain of trust to enable capabilities such
as debug tokens and DnX (see corresponding guides in kit collaterals).

Each item that is signed begins with the same structure, a binary, and
in the signing flow a manifest is added to it. The manifest is then
signed, and the signature and public key are entered into the header
of the manifest to create the final signed component binary.

Regardless of the type of binary being signed, all signed components
have the same final structure of original binary and manifest, where
public key and signature are part of the manifest header. See image:

Original Binary

Ao i Original Binary Image
Image Original Binary Image
: Manifest
Manifest
Header
Header
Info about the FW image
Info about the FW image and signature
and signature -
I Public Key I
Extensions | SR I
FW Hash Extensions
More info about the FW FW Hash

image and signature

More info about the FW
image and signature

10 Intel Confidential User Guide

Theory of Signing

3.4

User Guide

OEM Key Manifest (OEM KM)

The OEM Key Manifest plays a central part in the signing mechanism.
It lists the public key hashes used for authenticating the OEM-created
binaries to be loaded.

The OEM Key Manifest itself is signed, and its corresponding public key
hash is burned into a fuse (OEM FPF) at EOM, so it can never be
changed. This creates a secure verification mechanism where firmware
verifies that the OEM Key Manifest was signed with a key owned by a
trusted owner. Once OEM KM is authenticated, each public key hash
stored within the OEM KM is able to authenticate the corresponding FW
binary.

Can also add an OEM specific key under “OemAttestationManifest”
usage value, which works as a secure storage to hold an OEM key for
OEM to use in their own authentication process of their FW.

Since the hash burned into the platform hardware can never be
changed, it is critical to secure the private key used to sign the
OEM Key Manifest. If at any stage OEM would like to update the
image on the platform, the OEM KM for the new image must be
signed with the same key used for the original OEM KM.

OEM KM Example:

OEM KM
ISH PubKeyHash 1
iUnit PubKeyHash 2
Audio PubKeyHash 3
Token PubKeyHash 4
o
o
o
e N\
OEM KM Manifest
OEM KM Public Key
OEM KM Signature

Intel Confidential 11

3.5

3.6

12

Theory of Signing

Note: each component in the OEM KM is independent and can be
entered alone, or not entered at all, to OEM KM.

Opting out of the OEM KM

OEMs who do not wish to utilize the OEM KM, may use Intel signed
components authenticated by ROM.

When creating the final flashable image, ensure Intel components will
not fail to load due to signature issues by using pre-production Intel
signed ISH/Audio/iUnit with pre-production ME FW & production Intel
signed ISH/Audio/iUnit with production ME FW.

Do not create nor include OEM KM binary into FIT during image
creation. At EOM an FPF will permanently be set to indicate that the
OEM KM is not present, and that platform image can never be updated
with an OEM KM.

A platform that does not have an OEM KM in the image at the time
of EOM, will never be able to load an image containing an OEM KM.

This means that if an OEM chooses not to sign any OEM components
at the time of manufacturing, they can never add OEM signed
components for that platform.

Intel recommends that OEMs always add an OEM KM, even if they
have no use for it at the time the image is manufactured. This can be
done by adding an empty OEM KM (with no entries), which holds the
spot for an OEM KM which may be added at a later point via FWUpdate
in field.

Stitching a Flashable Image

Intel provides signed components in the kit released to OEMs. As
mentioned above, OEMs may create and sign some of their own
components. To create the final flashable image, individual
components need to be entered into the Flash Imaging Tool (FIT) to
stitch the components into the final image.

During image creation using FIT, when OEM signed components are
included into the image, the OEM KM and OEM components are added
into FIT in addition to the Intel components. (See System Tools User
Guide for more information on FIT usage.)

Intel Confidential User Guide

Theory of Signing

CSME FW

Manifest

Production signed
flashable image

Signature

ISH FW

Manifest

Signature

-
(=

i w—d

| -

| Y -

iUnit FW

Manifest

Signature ‘

° Key Manifest

. [e——
Manifest | ey
® Magh ﬁ Pub Other components such

Signature Key Hash as prod signed BIOS

3.7 IP Loading

3.7.1 Boot Flow Order

The signing of components is all preparation to be used in
authentication of components during boot time.

The boot flow order and establishment of root of trust, is as follows:

1. Using the Intel public key hash stored in ROM HW, RBE and ROT
KM are authenticated. (ROT KM holds the public key hashes for the
Intel signed components.)

2. Once RBE and ROT KM are authenticated, public key hashes in
ROT KM are used to authenticate Intel components; each key
authenticates its corresponding component.

3. If an OEM KM is present, RBE will authenticate the OEM KM using
the OEM public key hash in the OEM FPF.

4. Once OEM KM is authenticated, the keys inside it are used to
authenticate OEM components included in the OEM KM list. If a
component can be signed by OEM but is not, RBE authenticates
the Intel components against the keys in ROT KM.

User Guide Intel Confidential 13

Theory of Signing

5. Lastly, if present, components or capabilities that can only be
signed by OEM, are authenticated against the keys in the OEM KM.

~

E

Manifest

Signature

3.7.2

14

pmmmnd ROT KM
Manifest

o

Tokens OS Boofl oader

Manifest —
Signature O ISH iUnit

Audio

Signature

OEM KM Precedence

During the authentication process, where relevant, the ME engine first
checks the OEM KM to see if the desired component is listed. If the
component is listed in OEM KM, the associated key hash will be used
for authenticating the component and determine whether it should

load.

If the component is not listed by the OEM as a desired usage in the
OEM KM, the ME engine will look up the key hash in the ROT KM, and
determine whether the component can load based on whether it

authenticates.

If a public key hash is present in OEM KM, yet it fails to authenticate,
ME will not try to authenticate the corresponding Intel components

based on ROT KM.

See table below showing the components which can be listed in the
OEM KM, and what the precedence is if they are listed.

FW Component ROT KM

OEM KM

Precedence

ME authentication behavior during
FW loading

ME BUP Y

ME Main Y

PMC Y

ISH BUP Y

Audio (cAVS)
Image #1

ROT KM

Authenticate using key in ROT KM, if
no key or authentication fails, fail to
boot.

IAuthenticate using key in ROT KM, if no
key or authentication fails, fail to load

component.

Intel Confidential User Guide

Theory of Signing
If usage present in OEM KM,
ISH Main FW Y Y OEM KM then |authenticate using key in OEM KM. If
ROT KM authenticate fails, fail to load
iUnit Boot Loader |Y Y component & exit flow.

iUnit Main FW

If usage not present in OEM KM,
authenticate using key in ROT KM. If
Y Y no key or authenticate fails, fail to
load component.

Audio (cAVS)

If key usage marked for component in
OEM KM Only | OEM KM, authenticate using key in

N Y
Image #0 OEM KM, if authenticate fails, fail to
load component & exit flow.
OS Boot Loader N Y
OS Kernel N Y
OEM Debug
Tokens h i

3.7.3 Signature Authentication during Boot

Every co

mponent in the boot flow, Intel and OEM, all go through the

same authentication flow to verify the signature of the component. No
matter what the component is, RBE, a key manifest or a component
such as ISH, the concept is the same.

When platform boots, all that is known to be secure are the public key
hashes in the HW (Intel’s in ROM, and OEM’s in OEM FPF). Every step
of the way is started with a public key hash that has been
authenticated to be secure, and a component which needs to be
authenticated.

The component to be authenticated contains the original binary

attached

to a manifest which contains the public key and RSA

signature.

The following three steps authenticate the binary to be loaded:
1. Verify Public Key

Publi

with

c key found in the manifest header is hashed and compared
the already verified public key hash used to authenticate the

component. For example:

a.

b.

2. Use

Public key in RBE and ROT KM manifest header will be hashed
and compared with the public key hash in ROM.

Public key in OEM KM manifest will be hashed and compared
with public key hash in OEM FPF.

Public key in OEM ISH will be hashed and compared with
public key hash for ISH in OEM KM when present there. If not
present there, Intel ISH public key in manifest with be hashed
and compared with public key hash for ISH in ROT KM.

Public Key to Verify Signature

Once public key in manifest was verified, it is used to decrypt the
signature. This will produce a hash of the manifest section without
the public key and signature. The manifest in the binary is hashed

User Guide

Intel Confidential 15

Signed
by Intel
Private
Key

w

°~

FW

Manifest

Public Key

RSA Signature

16

Theory of Signing

and compared with the decrypted signature output. If these
hashes of the manifest equal, then the manifest has been

authenticated.

Use Verified Manifest to Verify FW

Manifest has been verified, therefore anything within it can be
trusted, including the hash of the original FW binary. The original
FW is hashed and compared with the hash of the FW in the
manifest to authenticate the FW. If the hashes equal, the
component is fully authenticated and can be loaded or used to
authenticate the next step in the chain.

1. Verify Public Key Matches
trusted key in Intel Silicon.

FW
[Hash | ;
el Manifest
1 1
L

e Public Key

RSA Signature

Public Key Hash

Intel Public Key

Intel Public Key Hash

2. Use Public Key Verify Signature of 3. Use verified manifest to verify FW
the manifest

EVWVERR =
'Hash the | FW
signed |
manifest |
§ Manifest """ Manifest !
2 [rwnen]
Intel Public Key Manifest Intel Puplic Key
. Hash
RSA Signature ‘_J RSA Si?nature
A
Manifest
A7 Hash B
[Decrypt signatore |
1 with Intel Public Key
........ 7 i< 58 >
V' Manifest FW

Intel Confidential User Guide

What Can Be OEM Signed

4

What Can Be OEM Signed

User Guide

The OEM signing infrastructure is available to support authenticating
OEM signed FW. The main use cases are:

ISH

Audio

Camera (only resigning of Intel IP)
Descriptor

Token

There are some differences between the signing flows for each of the
items listed above, therefore, please refer to the signing instructions
below for guidance on the necessary steps taken for signing each one.

An OEM Key Manifest must be created and signed to hold the keys of
any or all the items listed above.

Intel Confidential 17

intel)

5

How to Sign

How to Sign

5.1

5.2

18

High Level Signing of OEM Components

1.

Generate PKI key pairs and the public key hash for:
a. Each component to be signed by OEM
b. The OEM Key Manifest

(When production signing, keys used to generate signature should
be from secure server. See production signing section.)

Use the Intel® MEU tool to add to each binary a manifest,
signature, and where relevant also add metadata or compress the
binary. (When production signing, keys used to generate signature
should be from secure server.)

Create an OEM Key Manifest?!, including within it the public key
hash of each of the created keys for the correct corresponding
component, and use the Intel MEU to manifest/sign it.

Note: The order in which steps 2 and 3 are executed does not
matter.

Enter the desired image components to the FIT tool. This should
include the Intel components of the image as well as any OEM
signed component, the OEM KM and the public key hash
corresponding to the private key used to sign the OEM KM.

At EOM (End of Manufacturing)/closemnf process, the public key
hash value will be burned into the HW FPFs permanently.

For debug use-cases, you may add an OEM debug token to Intel
FIT.

Quick List of Signing Commands

1.

Generate a local private/public key pair

The Intel tools are designed to work together with the open source
OpenSSL tool (version 1.0.2b or later), which generates key pairs
in the RSA-3072 PKCS-1.5 format. This is the only key format
which is supported for the Intel IFWI image signing flow!
Although other tools which generate key pairs in this format can
be used for signing, Intel tools currently do not interface with any
other tool, and if you choose to use a different tool, Intel cannot
provide support.

The OpenSSL tool is not provided by Intel, it must be installed
separately. One source for the OpenSSL binaries is Shining Light
Productions, the "Light" version is sufficient. Ensure that
OpenSSL.exe can be run in the directory in which it is installed,
and it is able to create output files there as well, otherwise you
may see errors when executing some of the commands.

L OEM KM is optional. OEMs who do not wish to use OEM KM may keep OEM Public Key
hash as zeros in FIT tool.

If flashing an image without OEM KM at the time of EOM, the platform will never be able to
contain an OEM KM.

Intel Confidential User Guide

https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html

How to Sign

You can generate a private key by running the following command
from the CLI:

a. Generate privateKey.pem:
Openssl.exe genrsa -out <privateKey.pem> 3072

b. Generate publickey.pem:
Openssl.exe rsa -in <privateKey.pem> -pubout -out
<publicKey.pem>

Note: Generate a key pair for each component to be
signed, as well as for OEMKeyManifest. Or sign all with the
same key pair.

2. Generate meu_config.xml
meu.exe -gen meu_config
a. Update path to openssl.exe
b. Update path to privatekey.pem
c. Update path to LZMA (If signing ISH)
(LZMA tool can be downloaded from here)

3. Generate PubKeyHash.bin
meu.exe -keyhash <pubKeyHash> -key <publicKey.pem>
Note: There are additional commands listed in the next chapter
for creating the public key hash manually with Openssl, or using
MEU to extract it from a binary or along with the signing
command.

4. Generate the necessary xml for component being signed:
meu.exe -gen [codepartition] [codepartitionmeta]

[oemunlocktoken] [dnximagerecovery]

(Need a separate code partition file for each IUP or capability.)
Update the value field under:
(1) Name
(2) Usage (taken from value_list)
(3) Version (see versioning section bellow)
(4) InputFile (raw bin)

5. Generate OEMKeyManifest.xml
meu.exe -gen OEMKeyManifest
Update value field under:
(1) KeyManifestld
(2) (If necessary) SecurityVersionNumber
(3) Usage
(4) HashBinary

6. Generate CodePartition_signed.bin (Signs the
Codepartition.xml)

meu.exe -f CodePartition.xml -o
<CodePartition_signed.bin> -key <privateKey.pem>

User Guide Intel Confidential 19

http://www.originaldll.com/file/lzma.exe/31506.html

How to Sign

7. Generate OEMKeyManifest_signed.bin (Signs the
OEMKeyManifest.xml)
meu.exe -f OEMKeyManifest.xml -o
<OEMKeyManifest_signed.bin> -key <privateKey.pem>

Hash

20 Intel Confidential User Guide

How to Sign

5.3

5.3.1

User Guide

Extended Signing Commands,
Detailed Instructions and MEU Abilities

Additional ways to generate public key hash

Using MEU:
1. Extract public key hash from signed binary:

meu.exe -keyhash <output hashfile> -f <input.bin>
Example:

meu.exe -keyhash temp/hash -f iunp.bin

Intel (R) Manifest Extension Utility. Version: 15.40.XX.XXXX
Copyright (c) 2013 - 2021, Intel Corporation. All rights
reserved. MM/DD/YYYY - HH:MM:SS am

Command Line: meu -keyhash temp/hash -f iunp.bin
Log file written to meu.log
Loading XML file: C:/Users/meu config.xml
Public Key Hash Value:
14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD
23 D3 25 CC DD 88 D2 17 5C DE 3B 27 36
Public Key Hash Saved to:
temp\hash.bin
temp\hash.txt
Program terminated.

2. Generate public key hash along with the signing command:

meu.exe -keyhash <output hashfile> -f <input.xml> -o
<output.bin>

Manually with Openssl:
1. Extraction from the public or private key:
1.1. If using the public key:

openssl.exe rsa -in public.pem -text -noout -pubin

1.2. If using the private key:

openssl.exe rsa -in private.pem -text -noout
a. Copy the modulus (excluding any leading bytes that are all 0s)

b. Reverse the modulus byte order (Use excel to paste all the
bytes on different rows into a column, then put ascending
numbers in another column and do a reverse sort on the
numbers)

c. Paste the reverse byte modulus into a new file <new file> in
a hex editor

d. Copy the exponent following the modulus into the new file
(make sure it is little endian)

Hash the new file using
openssl.exe dgst -sha384 <new file>

2. Extraction from a manifest signed with the keys, by MEU

Intel Confidential 21

How to Sign

a. Open a signed file that MEU has created in a hex editor

b. Search for the string "$MN2"”, then move 100 bytes after
the start of "$MN2" (this will be the start of the modulus +
exponent)

c. Extract the following 260 bytes to a new file <new file>
Hash the new file using openssl:
openssl.exe dgst -sha384 <new file>

The public key hash is a readable string, and can be copied and pasted
from the text file as needed.

5.3.2 Versioning of Signed Components

5.3.2.1 Major, Minor, Hotfix, Build

All XMLs generated by MEU contain a field for setting the version in the
manifest of the binary to be signed.

SecurityVersionNumber] -"0x00000000 <t="The security version number of the OEM Key
Manif o
VerslionMajor | ue="0x0000" N -xt="Indicates the major number in the version numbering" />
VersionMinor value="0x0000" nhelp rext="Indicates the minor number in the version numbering" />
nHotfix e="0x0000" hel gxt="Indicates the hotfix number in the version numbering" /
'ersionBuild value="0x0000" Ip t «"Indicates the build number in the versicn numbering" />

OEMs are required to define these versions so the component can be
identified by its version. Versions are updated based on the changes
made, with the following rule of thumb in mind:

Major A major change in the component or design

Minor A minor change to the component

Hotfix If the new component is basically the same as before, but
includes a hotfix

Build Incremented any time the component is rebuilt again for
whatever reason

Here is the breakdown of the versioning as an examples taken from
CSME:

VersionMajor: 15 (when CSE version 15.40.10.2146)
VersionMinor: 40 (when CSE version 15.40.10.2146)
VersionHotfix: 10 (when CSE version 15.40.10.2146)

VersionBuild: 2146 (when CSE version 15.40.10.2146)

22 Intel Confidential User Guide

How to Sign

5.3.2.2

5.3.2.3

User Guide

Security Version Number (SVN)

The security version number (SVN) starts at 1 for production IPs. It is
used as a security measure to block the loading of versions with
security vulnerabilities. On a platform which contains an IP with SVN =
X, upgrade is allowed to versions with SVN=x or SVN>x.

Therefore:
e To allow downgrade to the previous IP versions, keep SVN the
same value as the previous version.
e To block downgrade to the previous IP versions, increase the
SVN.

For example, in machine that has a component with version 1.1.0.2
and SVN 2, the following applies:

Version SVN Value Can it be updated?

1.0.0.1 1 No, the SVN value is lower
1.1.0.1 2 Yes, same SVN value
1.2.0.0 3 Yes, higher SVN value

Hardware Anti-Rollback (ARB)

The SVN value of OEM KM can be stored in fuses to provide a
hardware level protection of anti-rollback. HW ARB requires OEMs to
invoke a HECI command to set the SVN value into fuses.

For information on how to commit the SVN value to FPF, please refer
to the BIOS writers guide.

This feature can extend to securing the rollback of any IP
authenticated by the OEM KM by following these steps:

1. Raise the SVN value of any IP

2. Use a new production key to sign the IP with the raised

SVN value

3. Enter the corresponding new public key hash into the
OEM KM for the relevant IP
Raise the SVN value in the OEM KM
Stitch the updated components into a new image
Use full FW Update to apply the new image
Apply the ARB SVN to the fuses by invoking the relevant
HECI command.

Nouwvs

Intel Confidential 23

5.4

54.1

24

intel.

How to Sign

Intel® Manifest Extension Utility (Intel®
MEU)
The Intel® Manifest Extension Utility (MEU) receives as input a

firmware binary created by a 3™ party and outputs an independent-
updateable partition (IUP) that is signed.

The Intel® Manifest Extension Utility (MEU) requires administrator
privileges to run under Windows* OS.

The Intel® MEU tool completes the following steps:

e Creates an Independent Updatable Partition (IUP) by adding
manifest and meta-data information to the firmware.

e Calls an external LZMA tool for compression of the ISH binary

e Calls the signing infrastructure tool to sign the partition.

Usage

The executable can be invoked by:

meu.exe [-exp] [-h|?] [-3rdparty] [-version|ver] [-binlist]
[-o] [-f][-gen] [-cfg] [-decomp] [-save] [-w] [-s] [-d]
[-ul] [-u2] [-u3][-mnver] [-mnpv] [-mndebug] [-st] [-stp]
[-key] [-noverify] [-kevhash][-resign] [-export] [-import]
[-printman] [-enablerevoke] [-revokekey]
Option Description
-H or -2: Displays the list of command line options
supported by the Intel® MEU tool.
-3rdparty Displays 3rd party software credits.
-EXP Shows examples about how to use the tools.
-VER | Version Shows the version of the tools.
-binlist Displays a list of supported binary types.
-0 <filename> Overrides the output file path.
-f <filename> Specifies input XML file.
-gen <type> Specifies the binary type for which to generate a
template XML file.
-cfg <filename> Overrides the path to the tool config XML file.
-decomp <type> Specifies the binary type to use for
decomposition.
-save Specifies the output XML path.
<filename>
-w <path> Overrides the $WorkingDir environment variable.
-s <path> Overrides the $SourceDir environment variable.
-d <path> Overrides the $DestDir environment variable.
Intel Confidential User Guide

How to Sign

User Guide

Option
-ul <path>
-u2 <path>
-u3 <path>

-mnver <value>
-mnpv <value>

-mndebug
<true|false>

-key <path>

-st <tool>

-stp <path>
-noverify

-keyhash
<path>

-resign
<indices|'all'>
-export
<indices|'all'>
-import <path>

-printman
<indices|all’>

-enablerevoke
<true|false>

-revokekey <path>

Description

Overrides the $UserVarl environment variable.
Overrides the $UserVar2 environment variable.
Overrides the $UserVar3 environment variable.

Overrides the version of the output binary.
(Format: Major.Minor.Hotfix.Build)

Overrides the PV flag in the output binary’s
manifest(s).

Overrides the debug flag in the output binary's
manifest(s).

Overrides the signing key in the tool config XML
file.

Overrides SigningTool in the tool config XML file.

Overrides SigningToolPath in the tool config XML
file.

Skips verification of generated manifest
signature.

Exports the public key hash to a file.

Resigns manifest(s) in a binary.

Exports manifest(s) from a binary.

Imports manifest(s) into a binary.

Prints manifest(s) information from a binary
Overrides RevocationEnabled in the tool config

XML

Overrides RevocationPath in the tool config XML

Intel Confidential

25

5.4.2

5.4.2.1

26

intel.

How to Sign

Examples

Generate Configuration XML Template

To get started using Intel MEU for signing, it is mandatory to set some

configurations for the tool. To do this, run the following command:
meu -gen meu config

ml ~"3.0" ! -{*uLe-a"
¥ nfig 5
YathVar: L ="Path Variablaes"
workinglir oY A *SWorkaingtlir" ~*Path for environment wvariable $Workinghir"
Sourceliz iluew="_ /" l=*"§SourceDir" [t="Path for envircament variable $SourceDizr" /
- fe -*SDmptDir" | . «*Path for snvircanent variable SDestDir*
"§O0servVarl™ & "Path for env nrent variable $U Varl®
=" SUpatrVar2" ="Path for snvironment variable
! "SUserVard” "Fath for environment variable
atl ‘
wgningCont Ly 1w "Signang Configuration®
SigningToal] -10pea " t="Disabled, .OpanSSL* il ="Signing Tool* | - t="Salact tool to be used
for signing, or disable signing
1gningt ath v e =*Signing Tool Path I t="Provide the path to your signing tool executablae
- infopansxl or C:\CpanSSL-WindZ\bin\ocpsnssl. exe'
. eyPath *$WorkingDir\private.pem™ | "Private Xey Path™ ! p text«"Path to private REA key

at) to be veed for slgning. Eey is required 1 using OpenSSL, ™

1q la -*Conprussion Configuration®
Patt ' " "LIMA Tocl Path" Path to lana tool axecutable

="Reavocation Configuration"
1 -*falsa" 1 t="true,.false" | |="Key revocation featurs onabled"
¢ to Trus when reveking the OXM public key hash from fumens. * /

FevocationkeyPath *§5ourceDir\Revokeprivkey . pen” '"Private xey path for revocation”
~"Path o privats BEA kay to be revoked (in PEM format) . Key is required S enabling sevocatlon flow,'
RFevocationConfig
nrel

This will generate a default configuration xml file:

The XML is generated with a default of using Openssl as the signing
tool. The user must enter the correct path, to the signing tool
executable, under the value of SigningToolPath:

To generate the manifest structure without the signature and public
key, set the signing tool value to ‘Disabled”:

<SigningTool value="Disabled"

Value list="Disabled,,OpenSSL" label="Signing Tool"

help text="Select tool to be used for signing, or disable
signing." />

When signing is set to Disabled, there is no need to add the Openssl
path as indicated above.

If using a single private key to sign several components (such as for
R&D purposes), the private key path may be entered into this XML
instead of the signing command:

<PrivateKeyPath value="$WorkingDir\private.pem"
label="Private Key Path" help text="Path to private RSA key
(in PEM format) to be used for signing. Key is required if
using OpenSSL." />

If the PrivateKeyPath value is left blank here, the private key will be
mandatory in the signing command.

When signing ISH component, it is mandatory to compress the
binary using LZMA tool. This is done by setting the LZMA tool path in
the configuration XML:

Intel Confidential User Guide

How to Sign

5.4.2.2

User Guide

<LzmaToolPath value="" label="LZMA Tool Path"
help text="Path to lzma tool executable." />

For signing any other component, leave this value empty as default.

Generate Code partition XML

Code partition XML is used to set the manifest data for ISH. Generate
a code partition XML to manifest, compress and sign ISH with the
following command:

meu -gen CodePartition

This will generate a default codepartition.xml file:

Aing=tucr-8"7
2.5

Xnl veErzion=*1.0% monc
defartition wexaiorn

<Nane VISHC"

1 t="Kama to use in the cutput bimary's directory. Maximue length is 4 characters.
<length value«"0x0" Lelp text«"Lemgth of output binary, extra space will be filled with OxFF's. 1f lengthk is smaller than
roguired, an error will be reported. 1f set to 0O, the length will be ccoputed as needed by the tool.

‘s

<Usage valus«"lahManifest" valus list«"CseBupManifest, ,CseMainManifest, K PncManifest, NcodManifest, .LociManifest,

,IntelUtokManifest, SPAYManifest , PchoManifeot,, JsiIntelManifest, ,GbstManitest, BootPolicyManitest,

JAUn1tMaInFwiNani fast, cAvsinagelManifest, cAvsinmagelManifost, IfviManitest, ,CsBootloaderManifest, OsFernelManitest,
| DenSnipNani fest, , IshMani fast, OCenDebugMani fest , , DarXeyMani fest, , 5ilentLakeVirmMani fent, CenDnxifwiManifest, PseManifest”

elp text="Indicates the type of data contained in this binary. This value is used during signaturs warification to validate
the public key." />

~endorld volue=*0x0000" />

Instanceld value=*0x1*

Partitionflags va lue="0x00000000" Heip texi="Hafars to flags relavant to manifest for & specific partition

Bit 0 should be set on for partition of PV or post W releass, *
<hattitionVeraion valoe=*0x10000000" />

g 1L ie="0x00000000% />
*0x00000000" />
I="Version Major”

4 l="Version Minor"
So="0x0" 1 I="Version Horfix"
=*0x0* libwl="Verslien Bulld" help ts

s boncon

eculityVe

<VeratonMajor

Vors Todl=‘Used to manually s

Vara

<Ver

<Wers

InputFlle valuc="* balg "Binary file from which to extract the version dotails.™ />
" oiajorBytetOsfzet

ooMajorBytel0
JnNinorBytedOf fast
onMinorgyteln

ruiondut lddyt

</CPlataNodules
</CPodules

J=Partition»
Once the codepartition.xml has been edited to include all the required

input fields, MEU can be run with the xml as input to manifest and sign
it with the private key created for this purpose.

Intel Confidential 27

YO0* help text-"Offset of Major Version nuwber's LEB in InputPile.
*Offset of Major Version nusber's MSE in InputFile.
"0ffset of Minor Version nusber's LSB in InputFile.
i t="0ffset of Minor Version mumber's MSB in InputFile. :
_texte"Offset of Hotfix Version number's LSB in InputFile.”

te="0ffnes of Puild Vers:ion number's LEB in InputFilm, *
ATy te Gl fret Value="0% holp teut="Offant of Build Version nurber's M5B in InputFilm, *

ii="Used to manvally set the Major Versicn field in
the Minor Varsice field i
t="Used to manually set the Hotfix Vursion field in the manifest"”
“Used to manvally set the Build Versien field in

the manifest*®
the manifest*

the manifesc®

od value="false" val linc="true, false” fizlp toxt="If enabled, the wversion dertalls will bes extracted from the
InputFile binary at the offsets specified. If disabled, the version must be specified manually .’

,iUnitBcotloadexNanifost,

“"ish main.bin"™ help terte"Fath to binary file to load for this module's data . *
Lon="LIMA" value |int="XOT_COMFRESSED, LEIMA* holp text="Salect covpression type for this module.
in="0xE6* />

®
l n tel How to Sign

5.4.2.3 Generating Code Partition Meta

The IUnit (camera) and aDSP (Audio) FW binaries use the
codepartitionmeta.xml file to manifest and sign their binaries. Meta in
the file name refers to the metadata added for these components.
Generate the code partition meta xml file with the following command:
meu -gen CodePartitionMeta

This will generate a default codepartitionmeta.xml file:

¥Rl WEai00%8.0% W000EL s uEE-8" 1
CodePartitionMets -*2. 5"
Namse valuo=*IUNp” t ="Name CO use in the outpot binary's directory MNaxiwusm length £s & characters.
Langel s llus=*0x0" | 1 =*lasgth of cutput binatry, extre spece will be filled with Ox¥7's. 1f langth iz amalles than
required, an srror will be seported. 1f amt to 0, the lungth will be cooputed as nesded by the tocl. *
Lasge ynluew** L= ConlnpManifoat, CosMainManifast, ProMani fast, WoodMani tess, LociMani fest, , intellitokMan)fest

PolicyManifest, 10nitBootloaderMani fest, , 1Unt thainFwMani fest,
CaluroelManl fest, Oustriphanifest, IshManifest,
JPaeManifnat”

(EPEYManifest, PchoManifest, IsiintelManifest, GhsatManifent, Boot
JCAvEIsageOMenifest cAvsimageiManifent, IfwiManifest, OsBootloaderMunife
,CunayManifust, , SiluntleckoVimydant fust , CurlrxlfwiManit

, CurDabiuydtan
' cxt="Indicatus the type of data contasned Iin this hinazry. This valus in uasd during signaturs verification to validate
the public wey. " />
Vendozld o «0N0000" Lelp teate*3R-bit Vendor ID value, {ex. InteleOxB086)"
tanceld “Oxt*
attivy Lags il «*0x00000000" nuiy vile"Refurs to flags relevant to sanifest for a specific partition, Bit 0 ahould be
aet an for partiticn of PV or post PV relsase.”
PartitionVersior 3 Lue=*Dx106 0" >
Nusbier g 000
Nusbet 00000
oxd' ersicn Major’ Lakt = Uswd to sunually set the Mejor Version fiald in the manifaest®
7 -CxO* bw [=*Varsicn Misor" he toxt="Uasd to manually set the Minor Version fisid in the nanifest” /
calonHotfix ~*0x0* pel«"Varsion Botfix" e teys="Cead to wansally set the Hotfix Version field in the nmanifest’
ralonBulla ew*Qud* Lel=*Vorsion Build” nel t="lUsed to manually set the Huild Version field in the manifest*
telonERTraction
Knablwd . »*falsm™ val: te="true, fulan" Iy . «*31f anablad, the ywrsion datails will be extractad froo the

InpusFile hinary at the offsete spacified. 12 dizablad, the varnion must be specified manually . ”

t«'Rinaxy file from which o extract the wersion details *

Input#s \ -
’ 1 -0" rext="0ffsat of Major Versice nmusber's LEB in Inguctfile.* /
e Lust="Offset of Major Versice musber's M58 in Ingotfile.
' -"Qn § tuxt="Offant of Micor Versice tuzber's LEB in InputFile.
-ror e “TOffant of Minor Veraiom wmusber's MED in TrputFile, "
0" toxt="0ffoet of Wotfim Version nusber's LSB in InputFile. "

0% hwly . “"Offest of Build Y " nusber‘s LA8 in IwpubFile *)
0t iy «"Offent of Build Yarsion nusbur's 28 in Diguilile *

VDM Mo «*ish maln®
Tnpucial «*iah _maln kin® nely L«"Datl o Disaty file o load fur this mudule's dats *
XpEO0IONTYY Lot LEA = "HOY_OOMPAKSEED , | LEMA® «"Soluct cumprussiin Lype for this eodule
1 “ronte”
ALaNOdu)

The default codepartitionmeta.xml file is set to IUnit (camera)
component, but can be edited for cAVS (Audio) as well.

To sign IUnit, set the usage value to iUnitMainFwManifest from the
value_list, set versioning and enter the path to the main IUnit binary
and metadata binary file:

<CodePartitionMetadata>
rt="Nane to use as matadata filenane in output bianmary. Maximum langth is 12

<Hame ¥ 1="ilunit.mat"”
characters " />
Inpuc¥ile e="funit_met.bin" Lelp text=*Local path to metadata binary file*® />

ne="Sunle" >
lue=*iunit.bin" hLelp text~"Path to binary file to load for this module's data." />

value="ROT COMPRESSED® value 1ist«"NOT COMPRESSED, ,LZMA" help text«'Select compression type

for Ehxs module.” />
</CPMDataModules

Note: Loading of an OEM IUnit is not supported. Signing of IUnit is
only relevant for re-signing Intel IUnit component.

28 Intel Confidential User Guide

How to Sign

5.4.2.4

User Guide

To edit the file for Audio signing, change the Name value to “"CAVS”,
set the usage value to cAvsImageOManifest from the value_list,
configure the versioning and set the name value and input value of
binaries to correspond to the Audio component:

Once the codepartitionmeta.xml has been edited to include all the
required input fields, MEU can be run with the xml as input to manifest
and sign it with the private key created for this purpose.

Secure Tokens (OEM Unlock Tokens)

The OEMUnlockToken binary is authenticated by the Intel ME FW.
OEMs who wish to use this feature need to create token, sign it with

n¥etadata
“"CAVE . met" t="Kane Lo use as metadata filecame in outg
="cavs met bin* ’ ‘Local path to metadata binary file'

=“cavs.bin" «"Path to binary flle 2o lc¢ad for this moduls's dats.*

="NOT_COMPRXSSED =!NOT_COMPRESSED, , LEMA" “Select compression type £

OEMV private key and include the public key hash in the OEM KM for

OemUnlockToken. To create such token, the OEM needs to generate

xml for it using the following command:
meu -gen OemUnlockToken

This will generate a default oemunlucktoken.xml file:

ErableWritinghwntontant , Endblalasdingivec

Deothing
"DaKothing”

There are multiple flags that can be set for the token creation:

¢ PartRestricted: Set to yes to allow token to be used on any
platform where the token key hash in OEM KM authenticates
that token, and token is tied to a particular platform ID.

e Anti-Replay Protected: Set to yes to disable a token from
being re-used on the same device after new token is created.
Relevant for tokens tied to a particular platform ID.

¢ TimeLimited. Set to yes to have token expire after a given
time period. Anti-Replay Protected must be set for token with
time expiration, because otherwise you can re-use the token
after RTC clear.

e SingleBoot

Intel Confidential 29

it binary. Maxisus length is 12

charactars . *

or

this nodule

30

ntel)

How to Sign

It is recommended to use to secure token with time expiration and
Anti-reply flag.

In the root node you can set:
e Expiration timeout (if relevant)
e Part ID path. You can retrieve the Part ID data using Intel®
FPT, by calling
FPT.exe —-GETPID <file>

This will retrieve the part ID into a file. Provide the path to the
directory that contains PID.bin or multiple PID binaries.

Note: Executing this command will invalidate all secure tokens with
Anti-replay protection generated earlier for the given platform

In the TokenKnobs section, set the ‘Knobs’ for the token. These define
what the token allows/disables on the platform. The knobs available
vary depending on the token being created. Here is an explanation of
the various knobs:

Knob Meaning
OEM Unlock Allow an OEM (Orange) unlock. It will enable debug interfaces to ISH
and Audio
ISH GDB Debug Enable ISH GDB support

Cancel OEM signing . o .
CSE skips the authentication of the OEM signed FW when an

OEM signed token with a knob for canceling OEM authorization
is present.

Note:
BootGuardDisabled,,BootGuardNoEnforcement,,BootGuardNoTimeouts,
,BootGuardNoEnforcementAndTimeoutsare not supported with OEM
Secure Token and should be set to DoNothing.

Once the OEMUnlockToken xml has been edited to include all the

required input files the MEU can be run with the xml as input to
manifest and sign it with the private key created for this purpose.

Intel Confidential User Guide

How to Sign

5.4.2.5 Generate OEM KM XML

The manifest file xml template can be generated using the following

command:
meu -gen OEMKeyManifest

This will generate a default oemunlucktoken.xml file:

sl werpiane"1.0* 2 'L L L)
DI yNani L -*2.5"
Nuww ynlus SR t t*"Namm to use in the output binary'as dirsctory. Maximus length iz 4 charactars
Langth yaluw="0x0" test="Langth of cutpet Dinary, extTa space will be £illed with OxFF'w. If length iw szaller than reguired,

wrror will be yeported. 1€ set 30 0, the leogth will ha caxputad as teaded Dy the teol,* /
I Pet0x0000" trnt "D of the CEM oresting the Wey Manifest*

eyManite 1 v ol } «“1D nurber of the Key Manifeat. Thie Is matched by the werifier against the value stored in
the platfors's #3¥ *
instanceld -0l * t «"Hefors to the instance of the ey Maxifest 4t hand
PartivionFlag \ «*0x 00000000 Lmlp = ~*Rofers 0 flaygs felevant to manifest for 4 specific partition,”
«*0x10000000" | «"Refury te the versionr of the partition ¢f the relevast man)fest” /
086" w"Shows Lhe vesdor 1D owning the Ky Masifest st hand* /o
«"0" helg ~*The VCN 1s incresented wvhenswer & changw i3 made to the TW making it incoepatible from
¥ with pravicus FN releesss®

="0x00000000* t t="The security version =umber uf the OEM Key Manifast”
" t='indicatas tha =ajor nusber in the verkian nusbering* /
vip text«'Indicatas the minor nusber in the versian nustering* /
~"Indicatas the hosfix nurber in the version nusbering* /
oxt=*Indicates the huild nusber in the version nusbering* /

eyManifeatEatcy
ige ' «*SootPolicyManifest | Ifwisanifest’ tetBootpolicyManifast, iUnltScotlosdardanifeat, LUnLthalabodtan] fost,
1fwisanifust, CaBool durManifust, Oa¥e CusSelpManifest lsdManifest, CurDebugMasifest,

v DuzAtinstationMes €, Ourlinz ! {wikar OuDuscriptorMinifust, DeeManifust
«rpubkuy hash bin® “*Path tc binary £ile containing Public ey Sash)*

Edit KeyManifestld field to a value other than zero. This value will be
entered into FIT and burned to an FPF.

The KeyManifestld field must be given a non-zero value. It is critical
that the matching field in FIT is also changed to the exact same
non-zero value. This field will be burned into an FPF and used to
validate the OEM Key Manifest on platform boot.

When updating an image with a new image, the new OEM KM must
have the same non-zero value as well.

Extra ‘KeyManifestEntry’ nodes should be added for each file that has a
unique key hash to be entered. If several files share the same key,
they can be included within the same node, as in the default xml
template.

So, for example, if the OEM Key Manifest will have several IPs signed

with the same key, eg:

e IshManifest, iUnitBootLoaderManifest & iUnitMainFwManifest with
key 1

It would appear as follows:

1

uTERTLY

UiaQe valun= lsdManifest | iUmitBooticadesMasifust | iUnd tMaiaPetanl fest® late

*BootPolicyManifest, 1lUnitBcotlosdusiani fast | 3Uni sMainTviass fast, cAvAInsguienifuat, chvalzageldant fast, Ifwidant fust, OuBoctl

cadarManifeat, OsKecnelManitest, OesSriphans fant, IshMand fast, OwsDebughess fast, 51 lactlakeieeiiani text , ,Oeabnxl twiMans fas" /
Binazy «*pubkey hask - bin* | axt="Path to birary file contaiming Public Ney fash OMuat be I3 hyzea)* /

User Guide Intel Confidential 31

5.4.2.6

5.4.2.7

32

How to Sign

If the OEM Key Manifest has a separate key for each IP, eg:
e IshManifest with key 1
¢ iUnitBootLoaderManifest & iUnitMainFwManifest with key 2

It would appear as follows:

32 bytws)

o 1fwiManifest

Once the OEM Key Manifest xml has been edited to include all the
required entries and hashes, the MEU can be run with the xml as input
to manifest and sign it with the private key created for this purpose.

Empty OEM KM

Once a platform is manufactured without an OEM KM, the image can
never be updated with an OEM KM. Therefore, if an OEM does not have
use for an OEM KM at the time of manufacturing, Intel still advises
that an OEM KM be added to the image. This can be done by adding an
empty OEM KM (no entries), which works as a placeholder in the
image. At a later time, once platform is in field, the image can be
updated via FWUpdate, to one with an OEM KM with relevant keys.
(eg. OEM debug token keys, adding an OEM audio driver etc.)

To do so, leave empty quotes for Usage Value, and provide a bin file
with zeros for the HashBinary value.

Eg:
<KeyManifestEntries>
<KeyManifestEntry>
<Usage value="" value_list
="BootPolicyManifest,,iUnitBootLoaderManifest,,iUnitMainFwManifest,,cAvsimag
eOManifest,,IfwiManifest,,OsBootLoaderManifest,,OsKernelManifest,,OemSmipM
anifest,,IshManifest,,OemDebugManifest,,SilentLakeVmmManifest,,OemDnxIfwi
Manifest" />
<HashBinary value="HashBinary0.bin" help_text="Path to binary file
containing Public Key Hash)" />
</KeyManifestEntry>
</KeyManifestEntries>

Signing Command with Input XML

Once the desired XML has been edited to include all the required
entries, this command will create the manifested and signed partition

using MEU.
MEU.exe -f <XML FILE.xml> -o <Output file Name.bin>

If a private key was not specified in the MEU_config.xml, or if a
different key is to be used, add the key to the signing command as
follows:

Intel Confidential User Guide

C, IfwiMan)fest, ,OsBoot
wrlivad CwiMant fost

osbeot
Owrlinal fwiMani funt

How to Sign

5.4.2.8

5.4.2.9

User Guide

MEU.exe -f <XML FILE.xml> -o <Output file Name.bin> -key
<privateKey>

Intel® MEU Binlist

Intel MEU supports manifesting and signing several different file types,

as listed above. To see the full list, run the following:
meu.exe -binlis
Inte 2 t xXte L t vers 1! 15.40.1°

, Intel Corporation, All rights

Command Line:

= f0L10mlr

an be generated

Type

meu config 1late tool config file (meu config.xml)

Oemliniock]

TessPartition Updateable TCSS Partition with auto

Progran terminated,

Intel® MEU Decomposition

Intel MEU is able to decompose a manifested and signed binary
returning it to the original state it was in before the Intel MEU added a
manifest and/or signature. This provides an xml detailing the
decomposition. This xml can later be used again as input to the Intel®
MEU to recreate the signed binary. The —decomp command also
requires the binary type as its first parameter.

To decompose an OEM Key Manifest binary:
meu -decomp OEMKeyManifest -f <input.bin> -save
<decomp KM.xml>

To decompose a codepartition Manifest binary:
meu -decomp codepartition -f <input.bin> -save
<decomp partition.xml>

To decompose a codepartitionmeta Manifest binary:
meu -decomp codepartitionmeta -f <input.bin> -save
<decomp meta.xml>

To decompose an oemunlocktoken Manifest binary:
meu -decomp oemunlocktoken -f <input.bin> -save
<decomp token.xml>

Intel Confidential 33

5.4.2.10

34

intel.

How to Sign

Intel® MEU Re-sign

Intel® MEU is able to re-sign a binary that has already been signed.
This is very useful when changing the signing keys - the relevant

binary files just need to be re-signed.
meu.exe -resign -f <input.bin> -o <output.bin>
<privatekey.pem>]

[-key

Some binaries, such as full IFWI images, include multiple manifests.
When calling the —-resign option on such binaries, it is necessary to
include the index of the manifest to be re-signed, or ‘all’ if all are to be
re-signed (using the new key). If the index, or ‘all’ is not included, the
Intel® MEU will show a full list of the manifests included in the binary:

More than one manifest was found in this file. Please
provide a comma-separated list of the manifest indices you
want to resign. (ex. -resign "0,3,5") or specify "all" (ex.
-resign "all")

The following manifests were detected:

Index | Offset | Size | Name (i1f available)

0 | 0x000084058 | 0x000000378 | RBEP.man

1 | 0x000094058 | 0x000000378 | PMCP.man

2 | 0x0000A4580 | 0x000001750 | FTPR.man

3 | 0x0000A9000 | 0x000000330 | rot.key

4 | 0x0001F4000 | 0x000000330 | oem.key

5 | 0x0001FB058 | 0x000000378 | ISHC.man

6 | 0x00023B070 | 0x000000378 | IUNP.man

7 | 0x00023DOE8 | 0x0000004B0O | WCOD.man

8 | 0x0002BDOB8 | 0x000000448 | LOCL.man

9 | 0x000342448 | 0x000000C00 | NFTP.man
Error 24: Failed to resign manifest(s). Missing manifest

indices list.

The Intel® MEU can then be called again including the index desired.
Following the above example if the OEM KM is to be re-signed, call:
meu.exe -resign 4 -f <input.bin> -o <output.bin> [-key
<privatekey.pem>]

Intel Confidential

User Guide

Intel® FIT

6

Intel® FIT

6.1

User Guide

Intel FIT is a stitching tool to combine multiple binary files into one,
configuration data and add other input into a full SPI image. This
document will only discuss the usage of the tool as relevant to the
signing mechanism. The full image creation procedure & FIT
functionalities are detailed in the Elkhart Lake - Intel® ME Firmware
Bring-Up Guide & System Tools User Guide.

Descriptor Signing

The main usage of FIT is to stitch and generate the final image, yet
since the descriptor is generated by FIT, FIT is also used to sign it.
(MEU is used behind the scenes for signing, but not visible to the
user.)

The descriptor is a section of the image which contains the offset
location of each region within the image. It also contains some
configurations such as soft straps.

By default, the descriptor is not signed. In order to enable signing it,
the setting “Flash Descriptor Verification Enabled” setting under
Platform Protection tab, must be set to “Yes”.

¥ Descnptor Configuration

Paramelst Valus Help Texd
Flash Desorgeor Vet | Yas

exclude master aces Yes ncludefexchide masier acoass in Te signaiure

Once this is done, when the image is built, by default the manifest will
be added to the descriptor in the image.

In order to production sign the manifest, MEU will need to be used to
export the manifest, send it to OEM production signing server, and
importing it back to the image. This flow of export and import is
described later in the document.

If the user would like to debug sign the descriptor with a debug key,
then user must open the build settings in FIT, and change the “Signing
Tool” setting from “Disabled” to "OpenSSL”, then enter the path to
openSSL under “Signing Tool Path”.

Once signing is enabled, user can add a debug signing key to the build
settings:

Intel Confidential 35

6.2

36

Intel® FIT
Build Settings
¥ Imago Build Settings
Parameler Value Halp Texi
Outpul Path £0esiDiffoutimage bin -
FWUpdate Output Path £DesIDif PWUpdate
Buld FWUpdate With Full Image No
Generale Intermeadiate Files Yes
Enable Boot Guard waming message al buid tme Yes
Enabie et (R) Platiorm Trust Technology wamin. Yes
Region Order 241 1=8I0S 2=MENFW 4=PDR
IwluidVersion OO 32.bdt value to use as the IFWI build version rumber
Redundancy Enabled false Enable Redundancy suppert for cntical layout comp.

eel{R) Mandest Extension Utity Path
Signing Tool Path
Signing Tool Disabled

Descrptor Debug Sigong Key Ths & the palh to the pravale debug key used to 3ig

In order to production sign the descriptor after debug signing it, follow
the same instructions as above. The only change is that on the secure
OEM signing server, the crypto fields will be replaced in the manifest
instead of placed there for the first time.

Signing components added to FIT

1. FIT includes input fields allowing the input of binary files. Most are
available in the Flash Layout tab.

2. Add the signed OEM KM binary into FIT if OEM signed components
are included to the image.

3. Add the Public Key Hash for OEM Key Manifest

This hash will be burned into an FPF in the FPF HW when the
system closes manufacture (closemnf/EOM), and can never be
changed after this stage.

Can also add a second OEM Key Hash as a security layer, to enable
the first OEM public key hash to be revoked.

4. The Key Manifest ID field must be changed from 0x0 to match the
value set in the OEM Key Manifest.

* Hash Key Configusation for Boolguard

Pacameter Value Help Text

OEM Pubic Key M
OEM Key Mosites! Bin
Second OEN koy hesh
Oem Kay Revocaon E

Sep DEM Kays Caeck

00000000000020

Q0000000000000
Yos
No

Raw lizsh srng for he SHA-DB4 fash of the OEM pobic key conespondng 1o e praasle hry usad 1o %00
Sigood mnfles! S comaming hashes of koys isad fof signng compononts of mage Thes seftng is cnly ¢

Enating the OEM key revocaton mechansms maurss UEN Pubke Key Hash' ard ‘Secord OEM soy hash
This & maant for debuggng purposes oaly Erating s perameter mmpacts mmege creabon procedise in Fl

Intel Confidential User Guide

Intel® FIT

6.3

User Guide

FIT Manifest Version Validation

In order to prevent issues in the final image due to use of an incorrect
MEU tool, EHL MEU inserts the MEU version into the IUP manifest
during the signing process. FIT uses that data to verify that the end
result image will be compatible for the image which FIT is going to

create.

The following checks are in place:

Test Title Test Logic Upon Failure
FIT will not stich

IUP IUP Manifest version (from IUP the image.
manifest manifest) == FIT supported The IUP team must
versionis manifest version update MEU and
supported resign the IUP.
by CSE FW

MEU version major.minor (from FIT will not stich
MEUand yp manifest) == FIT version the image.
FIT are major.minor. The IUP team must
from the update MEU and
san'!e resign the IUP.
project

Intel Confidential

37

intel)

7

Production Signing

Production Signing

7.1

| ISHFW

: Debug Key

7.2

38

i)

1

The purpose of this section is to allow customers to perform production
signing without requiring MEU to run on the signing server. The OEM
may use MEU to debug/dummy sign first and then export the given
manifest to a signing server for OEM proprietary signing flow.

Production Signing High-Level

After a component is signed with a debug (non-secure) key, or
component is manifested yet not signed, the manifest may be
exported to separate it from the main binary. The exported manifest
can then be sent to the secure server for production signing.

The secure server will insert a production signature and public key
hash into the manifest, which can then be imported back using MEU,
to the original binary, creating the production signed component.

2 € @
[il OEM Signing Server
= ISH FW | TISH FW Debug | o |SH Prod Manifest |
-~ YMVISVM > (SH Debug Manifest [MEU Manifest
] e | . ISH Prod Signature |
Signature
ISHFW & | 7 ISHFW
ISH Debug Marfest | Wnmmmy ISH Prod Manifest
ISH Debug ™ ‘lMEU > ISH Production Legend
Signature g Signature . FW tan teing signad. Ths

T Inciuoes il he CEM
basanies. 1SH FW. Tokens
T OEM XM ten, et

Debug Dumimy Mandfest &
Sqnaure

Producson Nanfest &
Sgnature

Note: The OEM “Production Key” is the key they wish to use for the

given bin for platforms in the field. They may define this key to be pre-

production or production per the needs (i.e. during R&D dedicate a
“Pre-production” key and for launched platforms, use “Production”

key.)
Export Manifests
Use the MEU -export function to export the manifest from binaries

who need signatures added or changed. The manifest is exported to a
directory.

Intel Confidential

User Guide

Production Signing

7.3

7.3.1

User Guide

meu -export -f <binary.bin> -o
<directory containing manifests>

If the binary includes multiple manifests, you must specify the index of
the desired manifest, e.g.

meu -export 0 -f <binary.bin> -o
<directory containing manifests>

If you do not supply an index or include all with the —export flag,
MEU will output a list of all the manifests, including their indices:

More than one manifest was found in this file. Please
provide a comma-separated list of the manifest
indices you want to export. (ex. -export "0,3,5") or
specify "all" (ex. -export "all")

The following manifests were detected:

Index | Offset | Size | Name (if
available)

0 | 0x000001130 | 0x000000DSC | FTPR.man

0x000053000 0x000000330 rot.key

\
2 | 0x000094058 | 0x000000378 | RBEP.man
3 | 0x0000A1748 | 0x000001280 | NFTP.man

Error 26: Failed to export manifest(s). Missing
manifest indices list.

Manifest structures

In order to perform production signing on the OEM server, the OEM
needs to re-sign the portion of the manifest, replace the signature and
insert the production public key. This section details the manifest
layout to enable this process.

Manifest Header
In order to use an alternate signing tool, the OEM needs to:
1. Sign the ‘Signed Portion’ of the manifests with the production
signing key. The signed portion is the full manifest except for
the signature and public key.

2. Change the Signature and Public Key section with the
production signature and production public key used.

This means, the entire manifest binary must be hashed without the
three crypto fields in the header: Public Key (offset 132, size 384),

Intel Confidential 39

40

ntel)

Exponent (offset 516, size 4) and Signature (offset 520, size 385). The
hash must be performed using SHA-384, then be encrypted with PKCS
#1-v1_5 to create the signature. Add the three crypto fields, key,
exponent and signature, back into the manifest header.

Production Signing

No other fields in the manifest should be changed.

Structure of manifest header:

Entry Name Offset Size Description
Type 0 4B Must be 0x4
Length 4 4B In Dwords.
- Equals 161 for SHA-256, PKCSv1.5
version
- 225 for SHA-384, SSA-PSS version.
Version 8 4B - 0x10000 for SHA-256 PKCSv1.5 version
- 0x21000 for SHA-384,SSA-PSS version
Flags 12 4B Manifest Flags

Bit 0 is PV bit flag: Intel components which are
PV quality will have this bit set. This is ignored
for OEM components.

Bit 31 is debug flag:

Optional use to indicate that manifest is debug
signed. If set to true during debug signing,
must be reverted to false on production signing

facility.

Vendor 16 4B Vendor ID

Date 20 4B yyymmdd in BCD format

Size 24 4B in Dwords size of the entire manifest.
Maximum size is 2K DWORDS (8KB)

Header_id 28 4B Mag[c number. Equals $MN2 for this
version

internal_data 32 4B Must be 0x4 for all headers

version_major 36 2B Major Version

version_minor 38 2B Minor Version

version_hotfix 40 2B Hotfix

version_build 42 2B Build number

Svn 44 4B Secure Version Number

meu_Kkit_version 48 8B MEU Kit Version

meu_manifest_version | 56 4B Manifest Version - increased each

fix/change that break backward
compatibility. Last word is reserved for

future use
reserved 60 60B will be set to 0
Intel Confidential User Guide

Production Signing

7.3.2

User Guide

intel)

Entry Name Offset Size Description

modulus_size 120 4B In DWORDs; 64 for pkcs 1.5-2048 , 96 for
SSA-PSS - 3072

exponent_size 124 4B
In DWORDs; for pkcs 1.5:2048, and for
SSA-PSS: 3072

Public Key 128 384B
Modulus in little endian format

Exponent 512 4B
Exponent in little endian format

Signature 516 384B
RSA signature of manifest extension in
little endian. The signature is an PKCS #1-
v1_5 of the entire manifest structure,
including all extensions, and excluding the
last 3 fields of the manifest header (Public
Key, Exponent and Signature).

There may be multiple extensions after this manifest header making
up the rest of the manifest binary.

Signhed Package Info Extension

For authenticating the various platform firmware components such as
CAVS, iUnit, ISH FW, etc. This structure will appear after manifest

header for codepartitions.

Name Offset | Offset Size Description
bytes
(Dec) | (Hex) | (PYteS)

Extension 0 0 4 = 15 for Signed Pkg Info Extension

Type

Extension 4 4 4 In bytes; equals (52 + 52*n) for this version,

Length where 'n’ is the number of modules in the
manifest

Package Name | 8 4 Name of the package

Version 12 C 4 The version control number (VCN) is

Control incremented whenever a change is made to

Number (VCN) the FW that makes it incompatible from an
update perspective with previously released
versions of the FW

Usage Bitmap 16 10 16 Bitmap of usages depicted by this manifest,
indicating which key is used to sign the
manifest

SVN 32 20 4 SVN of this signed image

Reserved 36 24 16 Must be 0

Module 0 52 34 12 Character array; if name length is shorter

Name than field size, the name is padded with 0
bytes.

Intel Confidential 41

ntel)

Production Signing

Name Offset | Offset Size Description
(Dec) | (Hex) | (PYteS)
Module O Type | 64 40 1 0 - Process
1 - Shared Library
2 - Data
3 - Reserved...
Module 0 Hash | 65 41 1 3 = SHA384
Algorithm
Module 0 Hash | 66 42 2 Size of Hash in bytes = N. N = 32
Size
Module 0 68 44 4 Size of metadata file
Metadata Size
Module 0 72 48 32 The SHA2 of the module metadata file
Metadata Hash
7.3.3 Metadata extensions
Name Offset Size Description
(bytes)
Extension Type 0 4 = 10 for module attribute extension
Extension Length 4 4 In bytes; equals 56 for this version
Compression Type 8 1 0 - Uncompressed
1 - Huffman compressed
2 - LZMA compressed
Reserved 9 3 Must be 0
Uncompressed 12 4 Uncompressed image size, must be
Size divisible by 4K
Compressed Size 16 4 Compressed image size. This is
applicable for LZMA compressed
modules only. For other modules,
should be the same as
“Uncompressed size” field.
Global Module 20 4 A globally unique identifier for the
Identifier module.
Bits 0-15: Module number, unique
in the scope of the vendor:
Bits 16-31: Vendor ID (PCI style)
Image hash 24 32 SHA2 Hash of uncompressed image

42

Intel Confidential

User Guide

Production Signing

7.3.4

User Guide

OEM Key Manifest

After Manifest Header for OEM KM, there will be Key Manifest

Extension that is used for OEM KM.

Offset Offset
(Dec) (Hex)

Name

Size
(bytes)

Description

Extension Type 0 0

= 14 for Key Manifest Extension

Extension Length 4 4

In bytes; equals (36 + 68*n) for this
version, where ‘n’ is the number of
keys in the OEM KM manifest

Key Manifest Type | 8

2 = OEM Key Manifest

Key Manifest
Security Version
Number (KMSVN)

12

4 The security version number for the
OEM Key Manifest

Reserved

16

10

2 0 - Reserved

Key Manifest ID 18 12

ID number of the Key Manifest. This
is matched by the verifier against the
value stored in the platform in FPF.
This is typically used as an ODM ID -
to enable an OEM to assign IDs to its
various ODMs and generate Key
Manifests specific to each ODM.

Reserved 19 13

Must be 0

Reserved 20 14

16

Must be 0

Key 0 Usage 36 24

16

Bitmap of usages; allows for 128
usages. Bits 0-31 are allocated for
Intel usages; bits 32-127 are
allocated for OEM usages

Bit 0-31: Reserved for Intel usage
Bit 32: Reserved

Bit 33: iUnit BootLoader Manifest
Bit 34: iUnit Main FW Manifest

Bit 35: cAVS Image #0 Manifest

Bit 36: cAVS Image #1 Manifest

Bit 37: Reserved

Bit 38: OS Boot Loader Manifest

Bit 39: OS Kernel manifest

Bit 40: Reserved

Bit 41: ISH manifest 1 (ISH Main)
Bit 42: ISH manifest 2 (ISH BUP)
Bit 43: OEM Debug Tokens Manifest
Bit 44: Reserved

Bit 45:
Bit 46: Reserved

Bit 47 - 127: Reserved for future use

Reserved

16

Key 0 Reserved 52 34

Key 0 Reserved

68

a4

Intel Confidential

43

7.4

44

intel.

Production Signing

Name Offset Offset Size Description
(Dec) | (Hex) | (PYteS)
Key 0 Hash 69 45 1 3 = SHA384
Algorithm
Key 0 Hash Size 70 46 2 Size of Hash in bytes = N. N = 32
Key 0 Hash 72 48 N (32) The hash of the key.

Import Manifest

Use the MEU -import function to import the signed manifest back into
the binary. The signed manifest must be in a separate directory
passed as an input parameter. If the binary supports multiple
manifests (e.g. a full SPI binary), and the folder has multiple
manifests, the command will be able to import them all back into the

binary.

meu.exe -import <directory containing manifests> -f
<input binary.bin> -o <output binary.bin>

8

Intel Confidential User Guide

Common Bring Up Issues and Troubleshooting Table

8 Common Bring Up Issues
and Troubleshooting

Table

8.1 Common Bring Up Issues and
Troubleshooting Table

Problem / Issue

Solution / Workaround

Intel MEU tool fails to run

Confirm that the MEU_Config and template xml
files are present in the same folder as the Intel
MEU tool.

Confirm that both files have been modified
properly.

Audio component fails to
load although signed and
entered into image as
instructed

Check in OEM KM, that the OEM audio
component uses the cAVSO0 key in OEM KM, not
CAVS1.

FIT errors

1. Check that public key hashes in OEM KM
match the private keys used to sign the
component.

2. Check that OEM public key hash in FIT
matches key used to sign OEM KM

3. Verify that codepartition, codepartitionmeta,
oemkeymanifest and other relevant XML fields
entered correctly

4. Ensure MEU version used is aligned with FIT
version (from same KIT)

User Guide

Intel Confidential 45

