

Elkhart Lake Signing and

Manifesting Guide

User Guide

Revision 1.21

January 2021

Intel Confidential

2 Intel Confidential User Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could

result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY
OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING
IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

User Guide Intel Confidential 3

Contents

1 Overview .. 6

1.1 Tools Used In This Document ... 6
1.2 Terminology ... 6
1.3 Pre-Requisites .. 7

2 Introduction .. 8

2.1 Why is signing important? .. 8
2.2 Who performs the signing? ... 8
2.3 When is signing performed? ... 8

3 Theory of Signing .. 9

3.1 Cryptography Basics .. 9
3.2 Key Security ... 9
3.3 Signed Components and Their Structure 10
3.4 OEM Key Manifest (OEM KM) .. 11
3.5 Opting out of the OEM KM .. 12
3.6 Stitching a Flashable Image ... 12
3.7 IP Loading .. 13

3.7.1 Boot Flow Order .. 13
3.7.2 OEM KM Precedence ... 14
3.7.3 Signature Authentication during Boot 15

4 What Can Be OEM Signed ... 17

5 How to Sign .. 18

5.1 High Level Signing of OEM Components 18
5.2 Quick List of Signing Commands 18
5.3 Extended Signing Commands, Detailed Instructions and MEU

Abilities ... 21
5.3.1 Additional ways to generate public key hash 21
5.3.2 Versioning of Signed Components 22

5.4 Intel® Manifest Extension Utility (Intel® MEU) 24
5.4.1 Usage .. 24
5.4.2 Examples .. 26

6 Intel® FIT ... 35

6.1 Descriptor Signing ... 35
6.2 Signing components added to FIT 36
6.3 FIT Manifest Version Validation ... 37
§ 37

7 Production Signing ... 38

7.1 Production Signing High-Level .. 38
7.2 Export Manifests ... 38
7.3 Manifest structures.. 39

7.3.1 Manifest Header .. 39
7.3.2 Signed Package Info Extension 41
7.3.3 Metadata extensions .. 42
7.3.4 OEM Key Manifest .. 43

7.4 Import Manifest .. 44

4 Intel Confidential User Guide

8 Common Bring Up Issues and Troubleshooting Table 45

8.1 Common Bring Up Issues and Troubleshooting Table 45

User Guide Intel Confidential 5

Revision History

Revision
Number

Description Revision
Date

0.1 • Based off-of ICL Nov 2018

0.2 • Rewrote chapters

• Reordered document

• Added theory of signing

• Updated screenshots

Jan 2019

0.7 • Reordered chapters even more, added and

removed some chapters.

May 2019

0.72 • Manifest header offset alignment

• And correction regarding iUnit signing – only for

resigning Intel component.

Aug 2019

0.8 • Added the words “or later” following the openssl

version listed.

Nov 2019

1.0 • HW Anti-Rollback

• Empty OEM KM

• What can be OEM signed

• Descriptor Signing

April 2020

1.1 • Updated wording for empty OEM KM

• Change guide name to include the word “User”

June 2020

1.2 • Added OemAttestationManifest usage in OEM KM

• Added “Cancel OEM signing” debug token

capability

July 2020

1.21 • Updated Intel® MEU screen captures

• Updated OemUnlockToken XML with singleboot

Token Flag

• Updated MEU binlist

• Added Key revocation usage to Intel® MEU

• Updated Descriptor Siging usage in Intel® FIT

• Removed invalid use case of Intel® MFIT

manifet version validation

January 2021

Overview

6 Intel Confidential User Guide

1 Overview

This document describes the manifesting and signing of OEM

components, enabling them to be included in the IFWI image for
Elkhart Lake platforms using Intel® CSE 15.40 FW.

The goal of this guide is to train the user to:

1. Manifest and sign OEM components

2. Include data on all signatures in the IFWI image

3. Build the final flashable production IFWI image

4. Configurations and options available in the signing process

This guide also offers theory and background for signing and IP loading
flow.

There may be components mentioned in this document which are not
POR for EHL.

1.1 Tools Used In This Document

The following tools are referenced this document:

• Intel® Flash Image Tool (Intel® FIT): in Intel® ME FW Kit

• Intel® Manifest Extension Utility (Intel® MEU): in Intel® ME FW Kit

• OpenSSL: Open Source

1.2 Terminology

Term Description

EHL Elkhart Lake

Intel® FIT Intel® Flash Image Tool

Intel® MEU Intel® Manifest Extension Utility

IFWI Integrated Firmware Image (System FW Image on SPI)

OEM KM OEM Key Manifest (containing OEM public key hashes to

authenticate OEM signed FW components).

ROT KM Root of Trust Key Manifest (containing Intel public key

hashes to authenticate Intel signed FW components)

ISH Integrated Sensor Hub

EOM End of Manufacturing

FW Firmware

IUP Independently Updatable Partition

Overview

User Guide Intel Confidential 7

1.3 Pre-Requisites

The user should download and install the Latest Intel® ME FW kit from

the following location: https://platformsw.intel.com/

The following guides, found in the ME FW kit, can offer background for
processes and tools discussed in this document:

• EHL Firmware Bring-Up Guide: Describes the overall platform bring-
up procedure.

• EHL System Tools User Guide: Offers further detail regarding usage
of all FW manufacturing tools.

§

https://platformsw.intel.com/

Introduction

8 Intel Confidential User Guide

2 Introduction

2.1 Why is signing important?

When a platform boots, it is critical to ensure the FW is loaded from a

trusted source.

Signing of FW components ensures that the owner of the component
(OEM/Intel) authorizes the loading and running of their component on

the platform. This is done by establishing a chain of trust from the
hardware of the platform itself, where hardware authenticates a key

manifest, and the key manifest is used to then authenticate the FW
components.

Platform Chain of trust extended from HW to OEM components

2.2 Who performs the signing?

Intel signs all FW components to be loaded by CSME. OEMs may add

or replace capabilities for several components, such as ISH and Audio.
In order to load the OEM components and use their capabilities,
signing of the component and an OEM KM is required.

If the OEM wishes to only use the Intel provided components, the OEM
is not required to sign anything, and OEM KM is not created.

2.3 When is signing performed?

Signing of components and creation and signing of OEM KM, is a step

performed in the R&D facilities pre-manufacturing. At the time of

manufacturing, the ready signed OEM components and OEM KM are
entered into the image creation tool (FIT) and the key used to
authenticate the OEM KM will be burned to the fuses. This will be
discussed in greater detail below.

§

OEM Public
Key Hash in

HW FPF

OEM Key
Manifest

OEM
Components

Load
Component

Theory of Signing

User Guide Intel Confidential 9

3 Theory of Signing

This chapter discusses the theory of signed structures, signing

components and how authentication is performed during boot flow.
For technical instructions on how to use the tools to sign your
components, please refer to chapter 4.

3.1 Cryptography Basics

Signing flow, and establishing a chain of trust, is based on the
concepts of cryptography. Two cryptographic functions are used in the

process:

1. Hashing

A one directional mathematical operation which is simple to
calculate, yet computationally difficult to reverse. It will produce
completely different outputs even when input data is similar. For
EHL, the hashing function used is SHA-384, which is from the
SHA2 family of cryptographic functions.

2. Data Encryption using RSA Algorithm

Using a private and public key pair which are mathematically

linked, data can be encrypted and then decrypted (reverse
encryption). The private key is used to encrypt the data, and then
public key can be used to decrypt it back to the original source.

In the signing process of components, the data being encrypted is
the hash of the original binary component, and the public key is

used to decrypt it back to its original format during verification. It

is important for the private key to be stored securely, so that only
the original body can perform the encryption. Public key is
available to the public, since once it is used to decrypt the
signature, the output is compared with the binary hash present in
the component. They will only match if the public key
mathematically corresponds perfectly to the private key used
during encryption.

For EHL, the private key size is RSA-3072.

3.2 Key Security

Although the same key may be used for signing each entry in the OEM

Key Manifest and the key manifest itself, Intel recommends using
separate key pairs for signing each component. Using a single key for

signing multiple components poses a level of risk, since if the key is
compromised, the entire package is compromised.

Production private keys should always be stored securely and kept

secret to provide a robust secure boot flow and firmware load. If the
keys escape to 3rd parties, they may be used to create and sign
unofficial versions of the binaries which can then be loaded onto the
platform.

Theory of Signing

10 Intel Confidential User Guide

It is important to allowing restricted/audited access to the keys in
order to resign components and build updated images for the platform.

For example, MEU could be run on a secure server which houses the

keys or OEMs may use the MEU export function for production signing
if MEU does not run on the OEM’s signing server (see production
signing chapter).

OEMs should manage separate sets of keys for development signing

and production signing of images. This will ensure that the OEM KM
and components run on production platforms is of production quality.

3.3 Signed Components and Their Structure

The OEM may create and sign ISH to replace the capabilities of the

Intel ISH, as well as create and sign an Audio component to extend
the Audio capability provided by Intel. Intel iUnit may be re-signed
with OEM key, but OEM may not create their own iUnit component.
Each one of these is independent. In addition, there are OEM signed
binaries that use the signing chain of trust to enable capabilities such

as debug tokens and DnX (see corresponding guides in kit collaterals).

Each item that is signed begins with the same structure, a binary, and
in the signing flow a manifest is added to it. The manifest is then
signed, and the signature and public key are entered into the header

of the manifest to create the final signed component binary.

Regardless of the type of binary being signed, all signed components
have the same final structure of original binary and manifest, where
public key and signature are part of the manifest header. See image:

Manifest

Extensions

Info about the FW image

and signature

Header

More info about the FW
image and signature

FW Hash

Signature

Public Key

Original Binary Image

Manifest

Extensions

Header

More info about the FW
image and signature

Info about the FW image

and signature

FW Hash

Original Binary Image
Original Binary

Image

Theory of Signing

User Guide Intel Confidential 11

3.4 OEM Key Manifest (OEM KM)

The OEM Key Manifest plays a central part in the signing mechanism.

It lists the public key hashes used for authenticating the OEM-created
binaries to be loaded.

The OEM Key Manifest itself is signed, and its corresponding public key
hash is burned into a fuse (OEM FPF) at EOM, so it can never be
changed. This creates a secure verification mechanism where firmware

verifies that the OEM Key Manifest was signed with a key owned by a
trusted owner. Once OEM KM is authenticated, each public key hash
stored within the OEM KM is able to authenticate the corresponding FW
binary.

Can also add an OEM specific key under “OemAttestationManifest”

usage value, which works as a secure storage to hold an OEM key for
OEM to use in their own authentication process of their FW.

OEM KM Example:

Important!

Since the hash burned into the platform hardware can never be

changed, it is critical to secure the private key used to sign the
OEM Key Manifest. If at any stage OEM would like to update the
image on the platform, the OEM KM for the new image must be
signed with the same key used for the original OEM KM.

 OEM KM Manifest

OEM KM

OEM KM Signature

OEM KM Public Key

ISH PubKeyHash 1

iUnit PubKeyHash 2

Audio PubKeyHash 3

Token PubKeyHash 4

Theory of Signing

12 Intel Confidential User Guide

Note: each component in the OEM KM is independent and can be
entered alone, or not entered at all, to OEM KM.

3.5 Opting out of the OEM KM

OEMs who do not wish to utilize the OEM KM, may use Intel signed
components authenticated by ROM.

When creating the final flashable image, ensure Intel components will

not fail to load due to signature issues by using pre-production Intel
signed ISH/Audio/iUnit with pre-production ME FW & production Intel
signed ISH/Audio/iUnit with production ME FW.

Do not create nor include OEM KM binary into FIT during image

creation. At EOM an FPF will permanently be set to indicate that the

OEM KM is not present, and that platform image can never be updated
with an OEM KM.

Intel recommends that OEMs always add an OEM KM, even if they

have no use for it at the time the image is manufactured. This can be
done by adding an empty OEM KM (with no entries), which holds the
spot for an OEM KM which may be added at a later point via FWUpdate
in field.

3.6 Stitching a Flashable Image

Intel provides signed components in the kit released to OEMs. As
mentioned above, OEMs may create and sign some of their own
components. To create the final flashable image, individual
components need to be entered into the Flash Imaging Tool (FIT) to

stitch the components into the final image.

During image creation using FIT, when OEM signed components are
included into the image, the OEM KM and OEM components are added

into FIT in addition to the Intel components. (See System Tools User

Guide for more information on FIT usage.)

Important!

A platform that does not have an OEM KM in the image at the time
of EOM, will never be able to load an image containing an OEM KM.

This means that if an OEM chooses not to sign any OEM components
at the time of manufacturing, they can never add OEM signed
components for that platform.

Theory of Signing

User Guide Intel Confidential 13

3.7 IP Loading

3.7.1 Boot Flow Order

The signing of components is all preparation to be used in

authentication of components during boot time.

The boot flow order and establishment of root of trust, is as follows:

1. Using the Intel public key hash stored in ROM HW, RBE and ROT
KM are authenticated. (ROT KM holds the public key hashes for the
Intel signed components.)

2. Once RBE and ROT KM are authenticated, public key hashes in
ROT KM are used to authenticate Intel components; each key
authenticates its corresponding component.

3. If an OEM KM is present, RBE will authenticate the OEM KM using

the OEM public key hash in the OEM FPF.

4. Once OEM KM is authenticated, the keys inside it are used to
authenticate OEM components included in the OEM KM list. If a
component can be signed by OEM but is not, RBE authenticates

the Intel components against the keys in ROT KM.

Theory of Signing

14 Intel Confidential User Guide

5. Lastly, if present, components or capabilities that can only be
signed by OEM, are authenticated against the keys in the OEM KM.

3.7.2 OEM KM Precedence

During the authentication process, where relevant, the ME engine first

checks the OEM KM to see if the desired component is listed. If the
component is listed in OEM KM, the associated key hash will be used
for authenticating the component and determine whether it should
load.

If the component is not listed by the OEM as a desired usage in the

OEM KM, the ME engine will look up the key hash in the ROT KM, and
determine whether the component can load based on whether it
authenticates.

If a public key hash is present in OEM KM, yet it fails to authenticate,

ME will not try to authenticate the corresponding Intel components
based on ROT KM.

See table below showing the components which can be listed in the
OEM KM, and what the precedence is if they are listed.

FW Component ROT KM OEM KM Precedence
ME authentication behavior during
FW loading

ME BUP Y N ROT KM

Authenticate using key in ROT KM, if

no key or authentication fails, fail to

boot.

ME Main Y N

PMC Y N

ISH BUP Y N

Audio (cAVS)
Image #1

Y N
Authenticate using key in ROT KM, if no

key or authentication fails, fail to load
component.

Theory of Signing

User Guide Intel Confidential 15

3.7.3 Signature Authentication during Boot

Every component in the boot flow, Intel and OEM, all go through the
same authentication flow to verify the signature of the component. No

matter what the component is, RBE, a key manifest or a component
such as ISH, the concept is the same.

When platform boots, all that is known to be secure are the public key
hashes in the HW (Intel’s in ROM, and OEM’s in OEM FPF). Every step

of the way is started with a public key hash that has been

authenticated to be secure, and a component which needs to be
authenticated.

The component to be authenticated contains the original binary
attached to a manifest which contains the public key and RSA

signature.

The following three steps authenticate the binary to be loaded:

1. Verify Public Key
Public key found in the manifest header is hashed and compared
with the already verified public key hash used to authenticate the

component. For example:

a. Public key in RBE and ROT KM manifest header will be hashed
and compared with the public key hash in ROM.

b. Public key in OEM KM manifest will be hashed and compared

with public key hash in OEM FPF.

c. Public key in OEM ISH will be hashed and compared with

public key hash for ISH in OEM KM when present there. If not
present there, Intel ISH public key in manifest with be hashed
and compared with public key hash for ISH in ROT KM.

2. Use Public Key to Verify Signature
Once public key in manifest was verified, it is used to decrypt the
signature. This will produce a hash of the manifest section without
the public key and signature. The manifest in the binary is hashed

ISH Main FW Y Y OEM KM then
ROT KM

If usage present in OEM KM,

authenticate using key in OEM KM. If

authenticate fails, fail to load

component & exit flow.

If usage not present in OEM KM,

authenticate using key in ROT KM. If

no key or authenticate fails, fail to

load component.

iUnit Boot Loader Y Y

iUnit Main FW Y Y

Audio (cAVS)

Image #0
N Y

OEM KM Only

If key usage marked for component in

OEM KM, authenticate using key in

OEM KM, if authenticate fails, fail to

load component & exit flow.
OS Boot Loader N Y

OS Kernel N Y

OEM Debug

Tokens
N Y

Theory of Signing

16 Intel Confidential User Guide

and compared with the decrypted signature output. If these
hashes of the manifest equal, then the manifest has been
authenticated.

3. Use Verified Manifest to Verify FW

Manifest has been verified, therefore anything within it can be
trusted, including the hash of the original FW binary. The original
FW is hashed and compared with the hash of the FW in the
manifest to authenticate the FW. If the hashes equal, the
component is fully authenticated and can be loaded or used to
authenticate the next step in the chain.

§

What Can Be OEM Signed

User Guide Intel Confidential 17

4 What Can Be OEM Signed

The OEM signing infrastructure is available to support authenticating

OEM signed FW. The main use cases are:

• ISH

• Audio

• Camera (only resigning of Intel IP)

• Descriptor

• Token

There are some differences between the signing flows for each of the

items listed above, therefore, please refer to the signing instructions

below for guidance on the necessary steps taken for signing each one.

An OEM Key Manifest must be created and signed to hold the keys of
any or all the items listed above.

How to Sign

18 Intel Confidential User Guide

5 How to Sign

5.1 High Level Signing of OEM Components
1. Generate PKI key pairs and the public key hash for:

a. Each component to be signed by OEM

b. The OEM Key Manifest

(When production signing, keys used to generate signature should
be from secure server. See production signing section.)

2. Use the Intel® MEU tool to add to each binary a manifest,
signature, and where relevant also add metadata or compress the

binary. (When production signing, keys used to generate signature

should be from secure server.)

3. Create an OEM Key Manifest1, including within it the public key
hash of each of the created keys for the correct corresponding
component, and use the Intel MEU to manifest/sign it.

Note: The order in which steps 2 and 3 are executed does not
matter.

4. Enter the desired image components to the FIT tool. This should

include the Intel components of the image as well as any OEM
signed component, the OEM KM and the public key hash
corresponding to the private key used to sign the OEM KM.

At EOM (End of Manufacturing)/closemnf process, the public key
hash value will be burned into the HW FPFs permanently.

5. For debug use-cases, you may add an OEM debug token to Intel

FIT.

5.2 Quick List of Signing Commands
1. Generate a local private/public key pair

The Intel tools are designed to work together with the open source

OpenSSL tool (version 1.0.2b or later), which generates key pairs
in the RSA-3072 PKCS-1.5 format. This is the only key format
which is supported for the Intel IFWI image signing flow!
Although other tools which generate key pairs in this format can
be used for signing, Intel tools currently do not interface with any
other tool, and if you choose to use a different tool, Intel cannot

provide support.

The OpenSSL tool is not provided by Intel, it must be installed
separately. One source for the OpenSSL binaries is Shining Light
Productions, the "Light" version is sufficient. Ensure that
OpenSSL.exe can be run in the directory in which it is installed,

and it is able to create output files there as well, otherwise you
may see errors when executing some of the commands.

1 OEM KM is optional. OEMs who do not wish to use OEM KM may keep OEM Public Key
hash as zeros in FIT tool.
If flashing an image without OEM KM at the time of EOM, the platform will never be able to
contain an OEM KM.

https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html

How to Sign

User Guide Intel Confidential 19

You can generate a private key by running the following command

from the CLI:

a. Generate privateKey.pem:

Openssl.exe genrsa -out <privateKey.pem> 3072

b. Generate publicKey.pem:

Openssl.exe rsa –in <privateKey.pem> –pubout –out
<publicKey.pem>

Note: Generate a key pair for each component to be
signed, as well as for OEMKeyManifest. Or sign all with the
same key pair.

2. Generate meu_config.xml

meu.exe –gen meu_config

a. Update path to openssl.exe

b. Update path to privatekey.pem

c. Update path to LZMA (If signing ISH)

 (LZMA tool can be downloaded from here)

3. Generate PubKeyHash.bin

meu.exe -keyhash <pubKeyHash> -key <publicKey.pem>

Note: There are additional commands listed in the next chapter
for creating the public key hash manually with Openssl, or using
MEU to extract it from a binary or along with the signing
command.

4. Generate the necessary xml for component being signed:

meu.exe –gen [codepartition] [codepartitionmeta]

 [oemunlocktoken] [dnximagerecovery]

 (Need a separate code partition file for each IUP or capability.)

 Update the value field under:

 (1) Name

 (2) Usage (taken from value_list)

 (3) Version (see versioning section bellow)

 (4) InputFile (raw bin)

5. Generate OEMKeyManifest.xml

meu.exe –gen OEMKeyManifest

 Update value field under:

(1) KeyManifestId

(2) (If necessary) SecurityVersionNumber

(3) Usage

(4) HashBinary

6. Generate CodePartition_signed.bin (Signs the
Codepartition.xml)

meu.exe –f CodePartition.xml –o
<CodePartition_signed.bin> -key <privateKey.pem>

http://www.originaldll.com/file/lzma.exe/31506.html

How to Sign

20 Intel Confidential User Guide

7. Generate OEMKeyManifest_signed.bin (Signs the
OEMKeyManifest.xml)

meu.exe –f OEMKeyManifest.xml –o
<OEMKeyManifest_signed.bin> -key <privateKey.pem>

How to Sign

User Guide Intel Confidential 21

5.3 Extended Signing Commands,
Detailed Instructions and MEU Abilities

5.3.1 Additional ways to generate public key hash

Using MEU:

1. Extract public key hash from signed binary:

meu.exe -keyhash <output hashfile> -f <input.bin>

Example:

meu.exe -keyhash temp/hash -f iunp.bin

===

Intel(R) Manifest Extension Utility. Version: 15.40.XX.XXXX

Copyright (c) 2013 - 2021, Intel Corporation. All rights

reserved. MM/DD/YYYY - HH:MM:SS am

===

Command Line: meu -keyhash temp/hash -f iunp.bin

Log file written to meu.log

Loading XML file: C:/Users/meu_config.xml

Public Key Hash Value:

 14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD

23 D3 25 CC DD 88 D2 17 5C DE 3B 27 36

Public Key Hash Saved to:

 temp\hash.bin

 temp\hash.txt

Program terminated.

2. Generate public key hash along with the signing command:

meu.exe -keyhash <output hashfile> -f <input.xml> -o
<output.bin>

Manually with Openssl:

1. Extraction from the public or private key:

1.1. If using the public key:
openssl.exe rsa -in public.pem -text -noout -pubin

1.2. If using the private key:
openssl.exe rsa -in private.pem -text -noout

a. Copy the modulus (excluding any leading bytes that are all 0s)

b. Reverse the modulus byte order (Use excel to paste all the
bytes on different rows into a column, then put ascending

numbers in another column and do a reverse sort on the

numbers)

c. Paste the reverse byte modulus into a new file <new file> in

a hex editor

d. Copy the exponent following the modulus into the new file
(make sure it is little endian)

Hash the new file using
openssl.exe dgst -sha384 <new file>

2. Extraction from a manifest signed with the keys, by MEU

How to Sign

22 Intel Confidential User Guide

a. Open a signed file that MEU has created in a hex editor

b. Search for the string “$MN2”, then move 100 bytes after
the start of “$MN2” (this will be the start of the modulus +
exponent)

c. Extract the following 260 bytes to a new file <new file>

d. Hash the new file using openssl:
openssl.exe dgst -sha384 <new file>

The public key hash is a readable string, and can be copied and pasted
from the text file as needed.

5.3.2 Versioning of Signed Components

5.3.2.1 Major, Minor, Hotfix, Build

All XMLs generated by MEU contain a field for setting the version in the
manifest of the binary to be signed.

OEMs are required to define these versions so the component can be
identified by its version. Versions are updated based on the changes

made, with the following rule of thumb in mind:

Major A major change in the component or design

Minor A minor change to the component

Hotfix If the new component is basically the same as before, but

includes a hotfix

Build Incremented any time the component is rebuilt again for
whatever reason

Here is the breakdown of the versioning as an examples taken from
CSME:

VersionMajor: 15 (when CSE version 15.40.10.2146)

VersionMinor: 40 (when CSE version 15.40.10.2146)

VersionHotfix: 10 (when CSE version 15.40.10.2146)

VersionBuild: 2146 (when CSE version 15.40.10.2146)

How to Sign

User Guide Intel Confidential 23

5.3.2.2 Security Version Number (SVN)

The security version number (SVN) starts at 1 for production IPs. It is
used as a security measure to block the loading of versions with
security vulnerabilities. On a platform which contains an IP with SVN =
x, upgrade is allowed to versions with SVN=x or SVN>x.

Therefore:
• To allow downgrade to the previous IP versions, keep SVN the

same value as the previous version.
• To block downgrade to the previous IP versions, increase the

SVN.

For example, in machine that has a component with version 1.1.0.2

and SVN 2, the following applies:

Version SVN Value Can it be updated?

1.0.0.1 1 No, the SVN value is lower

1.1.0.1 2 Yes, same SVN value

1.2.0.0 3 Yes, higher SVN value

5.3.2.3 Hardware Anti-Rollback (ARB)

The SVN value of OEM KM can be stored in fuses to provide a
hardware level protection of anti-rollback. HW ARB requires OEMs to
invoke a HECI command to set the SVN value into fuses.

For information on how to commit the SVN value to FPF, please refer
to the BIOS writers guide.

This feature can extend to securing the rollback of any IP

authenticated by the OEM KM by following these steps:

1. Raise the SVN value of any IP
2. Use a new production key to sign the IP with the raised

SVN value
3. Enter the corresponding new public key hash into the

OEM KM for the relevant IP
4. Raise the SVN value in the OEM KM
5. Stitch the updated components into a new image
6. Use full FW Update to apply the new image
7. Apply the ARB SVN to the fuses by invoking the relevant

HECI command.

How to Sign

24 Intel Confidential User Guide

5.4 Intel® Manifest Extension Utility (Intel®

MEU)

The Intel® Manifest Extension Utility (MEU) receives as input a

firmware binary created by a 3rd party and outputs an independent-
updateable partition (IUP) that is signed.

The Intel® Manifest Extension Utility (MEU) requires administrator

privileges to run under Windows* OS.

The Intel® MEU tool completes the following steps:

• Creates an Independent Updatable Partition (IUP) by adding
manifest and meta-data information to the firmware.

• Calls an external LZMA tool for compression of the ISH binary

• Calls the signing infrastructure tool to sign the partition.

5.4.1 Usage

The executable can be invoked by:

meu.exe [-exp] [-h|?] [-3rdparty] [-version|ver] [-binlist]

[-o] [-f][-gen] [-cfg] [-decomp] [-save] [-w] [-s] [-d]

[-u1] [-u2] [-u3][-mnver] [-mnpv] [-mndebug] [-st] [-stp]

[-key] [-noverify] [-keyhash][-resign] [-export] [-import]

[-printman] [-enablerevoke] [-revokekey]

Option Description

-H or -?: Displays the list of command line options

supported by the Intel® MEU tool.

-3rdparty Displays 3rd party software credits.

-EXP Shows examples about how to use the tools.

-VER | Version Shows the version of the tools.

-binlist Displays a list of supported binary types.

-o <filename> Overrides the output file path.

-f <filename> Specifies input XML file.

-gen <type> Specifies the binary type for which to generate a

template XML file.

-cfg <filename> Overrides the path to the tool config XML file.

-decomp <type> Specifies the binary type to use for

decomposition.

-save

<filename>

Specifies the output XML path.

-w <path> Overrides the $WorkingDir environment variable.

-s <path> Overrides the $SourceDir environment variable.

-d <path> Overrides the $DestDir environment variable.

How to Sign

User Guide Intel Confidential 25

Option Description

-u1 <path> Overrides the $UserVar1 environment variable.

-u2 <path> Overrides the $UserVar2 environment variable.

-u3 <path> Overrides the $UserVar3 environment variable.

-mnver <value> Overrides the version of the output binary.

(Format: Major.Minor.Hotfix.Build)

-mnpv <value> Overrides the PV flag in the output binary’s

manifest(s).

-mndebug

<true|false>

Overrides the debug flag in the output binary's

manifest(s).

-key <path> Overrides the signing key in the tool config XML

file.

-st <tool> Overrides SigningTool in the tool config XML file.

-stp <path> Overrides SigningToolPath in the tool config XML

file.

-noverify Skips verification of generated manifest

signature.

-keyhash

<path>

Exports the public key hash to a file.

-resign

<indices|'all'>

Resigns manifest(s) in a binary.

-export

<indices|'all'>

Exports manifest(s) from a binary.

-import <path> Imports manifest(s) into a binary.

-printman

<indices|’all’>

Prints manifest(s) information from a binary

-enablerevoke

<true|false>

Overrides RevocationEnabled in the tool config

XML

-revokekey <path> Overrides RevocationPath in the tool config XML

How to Sign

26 Intel Confidential User Guide

5.4.2 Examples

5.4.2.1 Generate Configuration XML Template

To get started using Intel MEU for signing, it is mandatory to set some

configurations for the tool. To do this, run the following command:
meu -gen meu_config

This will generate a default configuration xml file:

The XML is generated with a default of using Openssl as the signing

tool. The user must enter the correct path, to the signing tool

executable, under the value of SigningToolPath:

To generate the manifest structure without the signature and public
key, set the signing tool value to ‘Disabled’:

<SigningTool value="Disabled"

Value_list="Disabled,,OpenSSL" label="Signing Tool"

help_text="Select tool to be used for signing, or disable

signing." />

When signing is set to Disabled, there is no need to add the Openssl
path as indicated above.

If using a single private key to sign several components (such as for
R&D purposes), the private key path may be entered into this XML
instead of the signing command:

<PrivateKeyPath value="$WorkingDir\private.pem"

label="Private Key Path" help_text="Path to private RSA key

(in PEM format) to be used for signing. Key is required if

using OpenSSL." />

If the PrivateKeyPath value is left blank here, the private key will be
mandatory in the signing command.

When signing ISH component, it is mandatory to compress the
binary using LZMA tool. This is done by setting the LZMA tool path in

the configuration XML:

How to Sign

User Guide Intel Confidential 27

<LzmaToolPath value="" label="LZMA Tool Path"

help_text="Path to lzma tool executable." />

For signing any other component, leave this value empty as default.

5.4.2.2 Generate Code partition XML

Code partition XML is used to set the manifest data for ISH. Generate
a code partition XML to manifest, compress and sign ISH with the
following command:
meu -gen CodePartition

This will generate a default codepartition.xml file:

Once the codepartition.xml has been edited to include all the required
input fields, MEU can be run with the xml as input to manifest and sign
it with the private key created for this purpose.

How to Sign

28 Intel Confidential User Guide

5.4.2.3 Generating Code Partition Meta

The IUnit (camera) and aDSP (Audio) FW binaries use the

codepartitionmeta.xml file to manifest and sign their binaries. Meta in
the file name refers to the metadata added for these components.
Generate the code partition meta xml file with the following command:
meu -gen CodePartitionMeta

This will generate a default codepartitionmeta.xml file:

The default codepartitionmeta.xml file is set to IUnit (camera)

component, but can be edited for cAVS (Audio) as well.

To sign IUnit, set the usage value to iUnitMainFwManifest from the
value_list, set versioning and enter the path to the main IUnit binary
and metadata binary file:

Note: Loading of an OEM IUnit is not supported. Signing of IUnit is
only relevant for re-signing Intel IUnit component.

How to Sign

User Guide Intel Confidential 29

To edit the file for Audio signing, change the Name value to “CAVS”,

set the usage value to cAvsImage0Manifest from the value_list,
configure the versioning and set the name value and input value of
binaries to correspond to the Audio component:

Once the codepartitionmeta.xml has been edited to include all the
required input fields, MEU can be run with the xml as input to manifest

and sign it with the private key created for this purpose.

5.4.2.4 Secure Tokens (OEM Unlock Tokens)

The OEMUnlockToken binary is authenticated by the Intel ME FW.

OEMs who wish to use this feature need to create token, sign it with

OEM private key and include the public key hash in the OEM KM for
OemUnlockToken. To create such token, the OEM needs to generate
xml for it using the following command:
meu -gen OemUnlockToken

This will generate a default oemunlucktoken.xml file:

There are multiple flags that can be set for the token creation:

• PartRestricted: Set to yes to allow token to be used on any
platform where the token key hash in OEM KM authenticates

that token, and token is tied to a particular platform ID.
• Anti-Replay Protected: Set to yes to disable a token from

being re-used on the same device after new token is created.
Relevant for tokens tied to a particular platform ID.

• TimeLimited. Set to yes to have token expire after a given

time period. Anti-Replay Protected must be set for token with
time expiration, because otherwise you can re-use the token
after RTC clear.

• SingleBoot

How to Sign

30 Intel Confidential User Guide

It is recommended to use to secure token with time expiration and
Anti-reply flag.

In the root node you can set:

• Expiration timeout (if relevant)
• Part ID path. You can retrieve the Part ID data using Intel®

FPT, by calling
FPT.exe –GETPID <file>

This will retrieve the part ID into a file. Provide the path to the

directory that contains PID.bin or multiple PID binaries.

Note: Executing this command will invalidate all secure tokens with
Anti-replay protection generated earlier for the given platform

In the TokenKnobs section, set the ‘Knobs’ for the token. These define

what the token allows/disables on the platform. The knobs available
vary depending on the token being created. Here is an explanation of
the various knobs:

Knob Meaning

OEM Unlock Allow an OEM (Orange) unlock. It will enable debug interfaces to ISH

and Audio

ISH GDB Debug Enable ISH GDB support

Cancel OEM signing
CSE skips the authentication of the OEM signed FW when an
OEM signed token with a knob for canceling OEM authorization
is present.

Note:

BootGuardDisabled,,BootGuardNoEnforcement,,BootGuardNoTimeouts,
,BootGuardNoEnforcementAndTimeoutsare not supported with OEM
Secure Token and should be set to DoNothing.

Once the OEMUnlockToken xml has been edited to include all the
required input files the MEU can be run with the xml as input to

manifest and sign it with the private key created for this purpose.

How to Sign

User Guide Intel Confidential 31

5.4.2.5 Generate OEM KM XML

The manifest file xml template can be generated using the following
command:
meu -gen OEMKeyManifest

 This will generate a default oemunlucktoken.xml file:

Edit KeyManifestId field to a value other than zero. This value will be

entered into FIT and burned to an FPF.

Extra ‘KeyManifestEntry’ nodes should be added for each file that has a

unique key hash to be entered. If several files share the same key,
they can be included within the same node, as in the default xml
template.

So, for example, if the OEM Key Manifest will have several IPs signed

with the same key, eg:

• IshManifest, iUnitBootLoaderManifest & iUnitMainFwManifest with
key 1

It would appear as follows:

Important!

The KeyManifestId field must be given a non-zero value. It is critical

that the matching field in FIT is also changed to the exact same
non-zero value. This field will be burned into an FPF and used to
validate the OEM Key Manifest on platform boot.

When updating an image with a new image, the new OEM KM must

have the same non-zero value as well.

How to Sign

32 Intel Confidential User Guide

If the OEM Key Manifest has a separate key for each IP, eg:

• IshManifest with key 1

• iUnitBootLoaderManifest & iUnitMainFwManifest with key 2

It would appear as follows:

Once the OEM Key Manifest xml has been edited to include all the
required entries and hashes, the MEU can be run with the xml as input
to manifest and sign it with the private key created for this purpose.

5.4.2.6 Empty OEM KM

Once a platform is manufactured without an OEM KM, the image can
never be updated with an OEM KM. Therefore, if an OEM does not have
use for an OEM KM at the time of manufacturing, Intel still advises
that an OEM KM be added to the image. This can be done by adding an

empty OEM KM (no entries), which works as a placeholder in the
image. At a later time, once platform is in field, the image can be
updated via FWUpdate, to one with an OEM KM with relevant keys.
(eg. OEM debug token keys, adding an OEM audio driver etc.)

To do so, leave empty quotes for Usage Value, and provide a bin file

with zeros for the HashBinary value.

Eg:
<KeyManifestEntries>
 <KeyManifestEntry>
 <Usage value="" value_list
="BootPolicyManifest,,iUnitBootLoaderManifest,,iUnitMainFwManifest,,cAvsImag
e0Manifest,,IfwiManifest,,OsBootLoaderManifest,,OsKernelManifest,,OemSmipM
anifest,,IshManifest,,OemDebugManifest,,SilentLakeVmmManifest,,OemDnxIfwi
Manifest" />
 <HashBinary value="HashBinary0.bin" help_text="Path to binary file
containing Public Key Hash)" />
 </KeyManifestEntry>
 </KeyManifestEntries>

5.4.2.7 Signing Command with Input XML

Once the desired XML has been edited to include all the required

entries, this command will create the manifested and signed partition
using MEU.
MEU.exe -f <XML_FILE.xml> -o <Output_file_Name.bin>

If a private key was not specified in the MEU_config.xml, or if a
different key is to be used, add the key to the signing command as
follows:

How to Sign

User Guide Intel Confidential 33

MEU.exe -f <XML_FILE.xml> -o <Output_file_Name.bin> -key

<privateKey>

5.4.2.8 Intel® MEU Binlist

Intel MEU supports manifesting and signing several different file types,
as listed above. To see the full list, run the following:
meu.exe –binlist

5.4.2.9 Intel® MEU Decomposition

Intel MEU is able to decompose a manifested and signed binary

returning it to the original state it was in before the Intel MEU added a
manifest and/or signature. This provides an xml detailing the

decomposition. This xml can later be used again as input to the Intel®

MEU to recreate the signed binary. The –decomp command also
requires the binary type as its first parameter.

To decompose an OEM Key Manifest binary:
meu -decomp OEMKeyManifest -f <input.bin> –save

<decomp_KM.xml>

To decompose a codepartition Manifest binary:
meu -decomp codepartition -f <input.bin> –save

<decomp_partition.xml>

To decompose a codepartitionmeta Manifest binary:
meu -decomp codepartitionmeta -f <input.bin> –save

<decomp_meta.xml>

To decompose an oemunlocktoken Manifest binary:
meu -decomp oemunlocktoken -f <input.bin> –save

<decomp_token.xml>

How to Sign

34 Intel Confidential User Guide

5.4.2.10 Intel® MEU Re-sign

Intel® MEU is able to re-sign a binary that has already been signed.

This is very useful when changing the signing keys – the relevant
binary files just need to be re-signed.
meu.exe –resign -f <input.bin> –o <output.bin> [-key

<privatekey.pem>]

Some binaries, such as full IFWI images, include multiple manifests.

When calling the –resign option on such binaries, it is necessary to
include the index of the manifest to be re-signed, or ‘all’ if all are to be
re-signed (using the new key). If the index, or ‘all’ is not included, the
Intel® MEU will show a full list of the manifests included in the binary:

More than one manifest was found in this file. Please

provide a comma-separated list of the manifest indices you

want to resign. (ex. -resign "0,3,5") or specify "all" (ex.

-resign "all")

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000084058 | 0x000000378 | RBEP.man

 1 | 0x000094058 | 0x000000378 | PMCP.man

 2 | 0x0000A4580 | 0x000001750 | FTPR.man

 3 | 0x0000A9000 | 0x000000330 | rot.key

 4 | 0x0001F4000 | 0x000000330 | oem.key

 5 | 0x0001FB058 | 0x000000378 | ISHC.man

 6 | 0x00023B070 | 0x000000378 | IUNP.man

 7 | 0x00023D0E8 | 0x0000004B0 | WCOD.man

 8 | 0x0002BD0B8 | 0x000000448 | LOCL.man

 9 | 0x000342448 | 0x000000C00 | NFTP.man

Error 24: Failed to resign manifest(s). Missing manifest

indices list.

The Intel® MEU can then be called again including the index desired.
Following the above example if the OEM KM is to be re-signed, call:
meu.exe –resign 4 -f <input.bin> –o <output.bin> [-key

<privatekey.pem>]

§

Intel® FIT

User Guide Intel Confidential 35

6 Intel® FIT

Intel FIT is a stitching tool to combine multiple binary files into one,

configuration data and add other input into a full SPI image. This
document will only discuss the usage of the tool as relevant to the
signing mechanism. The full image creation procedure & FIT
functionalities are detailed in the Elkhart Lake - Intel® ME Firmware
Bring-Up Guide & System Tools User Guide.

6.1 Descriptor Signing

The main usage of FIT is to stitch and generate the final image, yet
since the descriptor is generated by FIT, FIT is also used to sign it.

(MEU is used behind the scenes for signing, but not visible to the
user.)

The descriptor is a section of the image which contains the offset
location of each region within the image. It also contains some
configurations such as soft straps.

By default, the descriptor is not signed. In order to enable signing it,
the setting “Flash Descriptor Verification Enabled” setting under
Platform Protection tab, must be set to “Yes”.

Once this is done, when the image is built, by default the manifest will
be added to the descriptor in the image.

In order to production sign the manifest, MEU will need to be used to
export the manifest, send it to OEM production signing server, and
importing it back to the image. This flow of export and import is
described later in the document.

If the user would like to debug sign the descriptor with a debug key,

then user must open the build settings in FIT, and change the “Signing
Tool” setting from “Disabled” to “OpenSSL”, then enter the path to

openSSL under “Signing Tool Path”.

Once signing is enabled, user can add a debug signing key to the build

settings:

Intel® FIT

36 Intel Confidential User Guide

In order to production sign the descriptor after debug signing it, follow

the same instructions as above. The only change is that on the secure
OEM signing server, the crypto fields will be replaced in the manifest
instead of placed there for the first time.

6.2 Signing components added to FIT
1. FIT includes input fields allowing the input of binary files. Most are

available in the Flash Layout tab.

2. Add the signed OEM KM binary into FIT if OEM signed components
are included to the image.

3. Add the Public Key Hash for OEM Key Manifest

This hash will be burned into an FPF in the FPF HW when the
system closes manufacture (closemnf/EOM), and can never be
changed after this stage.

Can also add a second OEM Key Hash as a security layer, to enable

the first OEM public key hash to be revoked.

4. The Key Manifest ID field must be changed from 0x0 to match the
value set in the OEM Key Manifest.

Intel® FIT

User Guide Intel Confidential 37

6.3 FIT Manifest Version Validation
In order to prevent issues in the final image due to use of an incorrect
MEU tool, EHL MEU inserts the MEU version into the IUP manifest
during the signing process. FIT uses that data to verify that the end
result image will be compatible for the image which FIT is going to

create.

The following checks are in place:

Test Title Test Logic Upon Failure

IUP
manifest
version is
supported
by CSE FW

IUP Manifest version (from IUP
manifest) == FIT supported
manifest version

FIT will not stich
the image.
The IUP team must
update MEU and
resign the IUP.

MEU and
FIT are
from the
same
project

MEU version major.minor (from
IUP manifest) == FIT version
major.minor.

FIT will not stich
the image.
The IUP team must
update MEU and
resign the IUP.

§

Production Signing

38 Intel Confidential User Guide

7 Production Signing

The purpose of this section is to allow customers to perform production

signing without requiring MEU to run on the signing server. The OEM
may use MEU to debug/dummy sign first and then export the given
manifest to a signing server for OEM proprietary signing flow.

7.1 Production Signing High-Level

After a component is signed with a debug (non-secure) key, or

component is manifested yet not signed, the manifest may be

exported to separate it from the main binary. The exported manifest

can then be sent to the secure server for production signing.

The secure server will insert a production signature and public key
hash into the manifest, which can then be imported back using MEU,

to the original binary, creating the production signed component.

Note: The OEM “Production Key” is the key they wish to use for the
given bin for platforms in the field. They may define this key to be pre-
production or production per the needs (i.e. during R&D dedicate a

“Pre-production” key and for launched platforms, use “Production”
key.)

7.2 Export Manifests

Use the MEU –export function to export the manifest from binaries

who need signatures added or changed. The manifest is exported to a
directory.

Production Signing

User Guide Intel Confidential 39

meu -export -f <binary.bin> -o

<directory_containing_manifests>

If the binary includes multiple manifests, you must specify the index of

the desired manifest, e.g.

meu -export 0 -f <binary.bin> -o

<directory_containing_manifests>

If you do not supply an index or include all with the –export flag,

MEU will output a list of all the manifests, including their indices:

More than one manifest was found in this file. Please

provide a comma-separated list of the manifest

indices you want to export. (ex. -export "0,3,5") or

specify "all" (ex. -export "all")

The following manifests were detected:

 Index | Offset | Size | Name (if

available)

 0 | 0x000001130 | 0x000000D9C | FTPR.man

 1 | 0x000053000 | 0x000000330 | rot.key

 2 | 0x000094058 | 0x000000378 | RBEP.man

 3 | 0x0000A1748 | 0x000001280 | NFTP.man

Error 26: Failed to export manifest(s). Missing

manifest indices list.

7.3 Manifest structures

In order to perform production signing on the OEM server, the OEM

needs to re-sign the portion of the manifest, replace the signature and
insert the production public key. This section details the manifest
layout to enable this process.

7.3.1 Manifest Header

In order to use an alternate signing tool, the OEM needs to:

1. Sign the ‘Signed Portion’ of the manifests with the production
signing key. The signed portion is the full manifest except for
the signature and public key.

2. Change the Signature and Public Key section with the

production signature and production public key used.

This means, the entire manifest binary must be hashed without the

three crypto fields in the header: Public Key (offset 132, size 384),

Production Signing

40 Intel Confidential User Guide

Exponent (offset 516, size 4) and Signature (offset 520, size 385). The
hash must be performed using SHA-384, then be encrypted with PKCS
#1-v1_5 to create the signature. Add the three crypto fields, key,
exponent and signature, back into the manifest header.

No other fields in the manifest should be changed.

Structure of manifest header:

Entry Name Offset Size Description

Type 0 4B Must be 0x4

Length 4 4B In Dwords.

- Equals 161 for SHA-256, PKCSv1.5
version

- 225 for SHA-384, SSA-PSS version.

Version 8 4B - 0x10000 for SHA-256 PKCSv1.5 version

- 0x21000 for SHA-384,SSA-PSS version

Flags 12 4B Manifest Flags

Bit 0 is PV bit flag: Intel components which are

PV quality will have this bit set. This is ignored

for OEM components.

Bit 31 is debug flag:

Optional use to indicate that manifest is debug

signed. If set to true during debug signing,

must be reverted to false on production signing

facility.

Vendor 16 4B Vendor ID

Date 20 4B yyymmdd in BCD format

Size 24 4B in Dwords size of the entire manifest.
Maximum size is 2K DWORDS (8KB)

Header_id 28 4B Magic number. Equals $MN2 for this
version

internal_data 32 4B Must be 0x4 for all headers

version_major 36 2B Major Version

version_minor 38 2B Minor Version

version_hotfix 40 2B Hotfix

version_build 42 2B Build number

Svn 44 4B Secure Version Number

meu_kit_version 48 8B MEU Kit Version

meu_manifest_version 56 4B Manifest Version - increased each
fix/change that break backward
compatibility. Last word is reserved for
future use

reserved 60 60B will be set to 0

Production Signing

User Guide Intel Confidential 41

Entry Name Offset Size Description

modulus_size 120 4B In DWORDs; 64 for pkcs 1.5-2048 , 96 for
SSA-PSS - 3072

exponent_size 124 4B
In DWORDs; for pkcs 1.5:2048, and for
SSA-PSS: 3072

Public Key 128 384B
Modulus in little endian format

Exponent 512 4B
Exponent in little endian format

Signature 516 384B
RSA signature of manifest extension in

little endian. The signature is an PKCS #1-
v1_5 of the entire manifest structure,
including all extensions, and excluding the
last 3 fields of the manifest header (Public
Key, Exponent and Signature).

There may be multiple extensions after this manifest header making
up the rest of the manifest binary.

7.3.2 Signed Package Info Extension

For authenticating the various platform firmware components such as

cAVS, iUnit, ISH FW, etc. This structure will appear after manifest
header for codepartitions.

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Extension

Type

0 0 4 = 15 for Signed Pkg Info Extension

Extension

Length

4 4 4 In bytes; equals (52 + 52*n) for this version,

where ‘n’ is the number of modules in the

manifest

Package Name 8 8 4 Name of the package

Version

Control

Number (VCN)

12 C 4 The version control number (VCN) is

incremented whenever a change is made to

the FW that makes it incompatible from an

update perspective with previously released

versions of the FW

Usage Bitmap 16 10 16 Bitmap of usages depicted by this manifest,

indicating which key is used to sign the

manifest

SVN 32 20 4 SVN of this signed image

Reserved 36 24 16 Must be 0

Module 0

Name

52 34 12 Character array; if name length is shorter

than field size, the name is padded with 0

bytes.

Production Signing

42 Intel Confidential User Guide

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Module 0 Type 64 40 1 0 – Process

1 – Shared Library

2 – Data

3 – Reserved…

Module 0 Hash

Algorithm

65 41 1 3 = SHA384

Module 0 Hash

Size

66 42 2 Size of Hash in bytes = N. N = 32

Module 0

Metadata Size

68 44 4 Size of metadata file

Module 0

Metadata Hash

72 48 32 The SHA2 of the module metadata file

...

7.3.3 Metadata extensions

Name Offset Size
(bytes)

Description

Extension Type 0 4 = 10 for module attribute extension

Extension Length 4 4 In bytes; equals 56 for this version

Compression Type 8 1 0 – Uncompressed
1 – Huffman compressed
2 – LZMA compressed

Reserved 9 3 Must be 0

Uncompressed
Size

12 4 Uncompressed image size, must be
divisible by 4K

Compressed Size 16 4 Compressed image size. This is
applicable for LZMA compressed
modules only. For other modules,

should be the same as
“Uncompressed size” field.

Global Module
Identifier

20 4 A globally unique identifier for the
module.
Bits 0-15: Module number, unique

in the scope of the vendor:
Bits 16-31: Vendor ID (PCI style)

Image hash 24 32 SHA2 Hash of uncompressed image

Production Signing

User Guide Intel Confidential 43

7.3.4 OEM Key Manifest

After Manifest Header for OEM KM, there will be Key Manifest

Extension that is used for OEM KM.

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Extension Type 0 0 4 = 14 for Key Manifest Extension

Extension Length 4 4 4 In bytes; equals (36 + 68*n) for this

version, where ‘n’ is the number of

keys in the OEM KM manifest

Key Manifest Type 8 8 4 2 = OEM Key Manifest

Key Manifest

Security Version

Number (KMSVN)

12 C 4 The security version number for the

OEM Key Manifest

Reserved 16 10 2 0 – Reserved

Key Manifest ID 18 12 1 ID number of the Key Manifest. This

is matched by the verifier against the

value stored in the platform in FPF.

This is typically used as an ODM ID –

to enable an OEM to assign IDs to its

various ODMs and generate Key

Manifests specific to each ODM.

Reserved 19 13 1 Must be 0

Reserved 20 14 16 Must be 0

Key 0 Usage 36 24 16 Bitmap of usages; allows for 128

usages. Bits 0-31 are allocated for

Intel usages; bits 32-127 are

allocated for OEM usages

Bit 0-31: Reserved for Intel usage

Bit 32: Reserved

Bit 33: iUnit BootLoader Manifest

Bit 34: iUnit Main FW Manifest

Bit 35: cAVS Image #0 Manifest

Bit 36: cAVS Image #1 Manifest

Bit 37: Reserved

Bit 38: OS Boot Loader Manifest

Bit 39: OS Kernel manifest

Bit 40: Reserved

Bit 41: ISH manifest 1 (ISH Main)

Bit 42: ISH manifest 2 (ISH BUP)

Bit 43: OEM Debug Tokens Manifest

Bit 44: Reserved

Bit 45: Reserved

Bit 46: Reserved

Bit 47 - 127: Reserved for future use

Key 0 Reserved 52 34 16

Key 0 Reserved 68 44 1

Production Signing

44 Intel Confidential User Guide

Name Offset

(Dec)

Offset

(Hex)

Size
(bytes)

Description

Key 0 Hash

Algorithm

69 45 1 3 = SHA384

Key 0 Hash Size 70 46 2 Size of Hash in bytes = N. N = 32

Key 0 Hash 72 48 N (32) The hash of the key.

7.4 Import Manifest

Use the MEU –import function to import the signed manifest back into
the binary. The signed manifest must be in a separate directory
passed as an input parameter. If the binary supports multiple

manifests (e.g. a full SPI binary), and the folder has multiple
manifests, the command will be able to import them all back into the
binary.
meu.exe -import <directory_containing_manifests> -f

<input_binary.bin> -o <output_binary.bin>

§

Common Bring Up Issues and Troubleshooting Table

User Guide Intel Confidential 45

8 Common Bring Up Issues

and Troubleshooting

Table

8.1 Common Bring Up Issues and
Troubleshooting Table

Problem / Issue Solution / Workaround

Intel MEU tool fails to run Confirm that the MEU_Config and template xml

files are present in the same folder as the Intel

MEU tool.

Confirm that both files have been modified

properly.

Audio component fails to

load although signed and

entered into image as

instructed

Check in OEM KM, that the OEM audio

component uses the cAVS0 key in OEM KM, not

cAVS1.

FIT errors 1. Check that public key hashes in OEM KM

match the private keys used to sign the

component.

2. Check that OEM public key hash in FIT

matches key used to sign OEM KM

3. Verify that codepartition, codepartitionmeta,

oemkeymanifest and other relevant XML fields

entered correctly

4. Ensure MEU version used is aligned with FIT

version (from same KIT)

§

