DnX (Download and Execute)

User Guide

ntel)

March 2021

Revision 1.2

Intel Confidential

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU
PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,
MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or
goto: http://www.intel.com/design/literature.htm.

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that
license.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers,
licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such
use of Intel’s internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

2 Intel Confidential

http://www.intel.com/design/literature.htm

Contents

INEFOAUCTION .t 6
1.1 TermMiNOIOGY .ottt 6
Intel® Download and Execute (Intel® DNX) ...cccccoveeivecineieneeeeseeeeeen 7
2.1 INErOAUCTION oo 7
2.2 USE CASES ...ttt ettt 8
2.3 TEIQQELS oottt ettt be st et et a e aeeseereetens 9
Intel® DNX ReQUIFEMENTS ..ot 10
3.1 TOOIS @NA FilES ..o 10
3.2 How to enable Intel® DnX on the Platformcccccovvneineinnnnnn. 12
3.2.1 During Manufacturing or Before End-of-Manufacturing..12
3.2.2 End-of-Manufacturing.......ccccoeveoeiiciceeceeeeceeee 12

3.3 How to build an Intel® DnX Image for Manufacturing/Refurbish
USE CASES ..ouveviieiiietiietestesesteseste e s se e s te e sse e st ese st e e et e e s tesa et eneeseneeseneesasseseneesensans 16

3.3.1 Preparing the Target Platform to receive an Intel® DnX-
enabled IMage....... e 16
USGE ..ttt sttt b ettt a e Rt st e ettt n et te st et et e ens 21
4.1 Host and Target SELUP ... 22
4.1.1 Intel® Platform Flash Tool (PFT) Overview...........ccccco...... 22
4.2 Image Recovery/Programmingcccoceieieeiiiienienieeeeeeeese e 25
4.2.1 Using Intel® PFT GUI......cccooiieiieieeeeeeeeeee e 25
4.2.2 Using Command LiN€.......ccocooioeieieiceeeeeeeeee e 30
4.3 OEM DebUQg TOKENS ...t 33
4.3.1 Using Intel® PFT GUI......cccooiveieeeeeeeeeeeeee e 33
4.3.2 Using Command LiN€.......ccccoovveiirieiieeseeseeseeseesees e 36
4.3.3 ComMmON €rror MESSAGEScoeirieuiriererieieriererieieseere e seeseneas 38
Opening Intel® DnX capabilities post EOMccccccveiieivcciscceeeesee 41
5.1 Flow to open prohibited post EOM Intel® DnX capabilities.......... 42

Intel Confidential 3

ntel)

5.2 Preparing the OEM token for Intel® DnX capabilities using

INEEI® PFT GUI....ooieeeeee ettt 42
5.3 Preparing the OEM token for Intel® DnX capabilities using

INEEIR PFT CLI..ooeieiiieeeeeeetsees ettt 42
5.4 Downloading OEM Key Manifest and Set Capabilities...................... 43
REFEIENCES ..ottt 45

Intel Confidential

Revision History

Revision Description Revision Date
Number
0.7 o |nitial release July 2019
0.8 e Removed reference to PFT cflasher Nov 2019
1.0 e Adding IFWI flashing for SPI March 2020
11 e Updated revision to 1.1 September 2020
1.2 e PV Firmware update and Change of layout March 2021

§§

Intel Confidential

®
n te l Introduction

Introduction

The purpose of the document is to provide guidance on Intel® Download and Execute
(Intel® DnX) feature, usage of this feature and how it gets enabled using Intel® CSE
components as well as Intel® Platform Flash Tool (PFT).

Terminology
Acronym or Term Definition
Intel® CSE Intel® Converged Security Engine
Intel® DnX Intel® Download and Execute
Intel® FIT Intel® Flash Image Tool
FW Firmware
Intel® PFT Intel® Platform Flash Tool
Target System Under Debug or Target Platform
OEM Original Equipment Manufacturer
Intel® FPT Intel® Flash Programming Tool

Intel Confidential

[] ®
Intel® Download and Execute (Intel® DnX) ‘ l n te l :

Intel® Download and Execute (Intel® DnX)

2.1

Introduction

“DnX” is Intel’s proprietary solution to download FW module to a target machine from a
host machine by means of USB cable and execute it. Intel® DnX flows are executed over
fixed USB 2.0 port. On SPI platforms, this capability allows to access boot media for IFWI
write as well as signed Token injection for debug unlock after the platform have
completed manufacturing.

Intel® ME

M

Figure 1

There are many advantages in using Intel® DnX, one of which is the capability to flash
IFWI without opening the chassis to physically reach the flash device. This is especially
important in the manufacturing line once the chassis is closed, in debug labs and in post
manufacturing scenarios. Other methods such as FWUpdate and Capsule flow can be
used on subsequent upgrades/downgrades if the platform can boot to an operating
system. Intel® DnX is a capability in Intel® CSE ROM, where during the boot ROM can
configure the USB port #0 on the PCH to connect to a remote computer to download
Intel® DnX module which is signed by Intel. This module initiates rest of the Intel® CSE
and sets up an environment to accept IFWI binary or secure token from a remote
computer. The flow is explained below:

Intel Confidential 7

®
l n te l Intel® Download and Execute (Intel® DnX)

Flashing IFWI into NVM

Remote Host

1. DnX is triggered:
User trigger (strap or BIOS)
No boot image (recognized by Intel®
CSE ROM)
L - - @ —————— -- + Corrupted image (recognized by Intel®
CSE ROM)
| @ ______ L 2. USB stack in CSE ROM enumerates USB
= and establishes USB communication with
the host
3. DnX stack in CSE ROM establishes
| AN ___| _ connection with the recovery app via USB
@ (using APIs provided by USB stack)
= 4. DnX stack downloads DnX module to
SRAM from the host and authenticates it
--- —@ —————— = 5. DnX module authenticates and downloads
\ / new image fo target flash device

Figure 2
Injecting Secure Token for Debug

User has to prepare

(Remote Host + Remote Host machine connected to the USB

/ Target Devigce
'I connector on port 0 of the platform
: DnX App
1
: DnX Module
: @ = OEM secure token generated and signed with
Token Tool (for debugging the platf
i DnX Module DnX Module ol foclforcesugai theplaterm)
Module pub key Module pub key

; i Token Flow:
: : Token pub key 1. ROM loads DnX Module
: : 2. ROM authenticates DnX Module
1 1

\ |‘ I:zi:i:‘:’:j \ _/ 3. DnX Module loads Secure Token
N _ ____________ = 4. DnX Module writes the Token inte data

Legend pariition on flash
R . —p
Trigger into DnX; hw strap Module |=—+
Figure 3
2.2 Use Cases
Below use-cases are supported on EHL platform.
Scenario Use Case
Manufacturing and refurbishing e Full IFWL.bin programming into SPI
boot media
e Read content of SPI boot media

8 Intel Confidential

2.3

Scenario Use Case
Debug e Write/Read/Erase signed debug
tokens into the platform
Triggers
Following methods can be used to enter Intel® DnX on the platform.

Method Detail Use Case

Pin Strap GPIO: GP_CO08 (signal name For Injecting OEM
DNX_FORCE _RELOAD) can debug tokens for non-
be used to trigger Intel® DnX | booting scenarios due
on the platform. to Boot Guard failures
Important : For details on OR
Hardware trigger method,
please refer to “Elkhart Lake For Image
External Design Specification Recovery/Update
(EDS), Volume 1 (RDC#
601458)”. Also check with
your EC Customer
Enablement representative
on EC Firmware
requirements.

Intel® CSE or BIOS Error mtel® CSE or BIOS reach a For Image

Handling Flow cal error which prevent Recovery/Update
platform from booting, it can
be programmed to enter
Intel® DnX flow. (e.g. Failure
to authenticate BIOS
signature, CSE detect FW
corruption, etc.)

Empty Flash Device When CSE ROM detects an For Image
empty flash device on the Recovery/Programming
platform, it will enter Intel®
DnX mode

Intel Confidential

Queiros, Pedro
Is the recovery flow triggered on any critical error on only on corruption related errors? E.g. signature mismatch?

Waydande, Sonal
Yes, from what I read in the FAS, a bad manifest could be a trigger.

intel)

Intel® DnX Requirements

3 Intel® DnX Requirements

To use Intel® DnX technology on a target platform, the following are the requirements

1.
2.
3.

3.1

Set the Intel® DnX fuse — covered in Chapter 3
Method to Enter Intel® DnX mode — covered in Section 2.3
Operations in Intel® DnX mode,
a. Perform Image recovery or programming of boot media
b. Interact with target to inject OEM debug token to enable debug
features.
Both a and b are covered in Chapter 4 and 5

Tools and Files

Following tools and files are applicable for Intel® DnX:

10

Intel® PFT (Platform Flash Tool) — Intel implementation of Intel® DnX tool
running on remote host computer. Intel® DnX module, config.xml and IFWI.bin
are inserted to the target machine via this tool. Will be included in the Intel®
CSE Kit for EHL platform.

Intel® DnX Module - binary file signed by Intel. This file has the Intel® DnX logic
Intel® CSE ROM will run. Will be included in the Intel® CSE kit for EHL Platform in
the “DnX” folder

* [Name Date modified Type Size

dnx 212

|| ese_image.bin

12:19 PM File folder

20 1.02 PM BIN File

3,160 KB

Figure 4

Please link this file to the Intel® PFT tool as shown in Chapter 4

Intel® FIT — can be used to create Intel® DnX based IFWI image. This is covered
in Section # 3.2 of this document.

Intel® FPT - can be used to configure Intel® DnX fuse and close manufacturing
on the platform. Will be included in the Intel® CSE kit for EHL Platform. Please
note, this setting is a must to have Intel® DnX enabled in your platforms.

Intel® FIT and Intel® FPT are released in the CSME firmware kits under System
Tools.

Intel Confidential

Intel® DnX Requirements

1540102204 > Tools * System_Tools

Ea

] Name Date modified
Documentation 22272021 2:19 PM
FIT 2/22/2021 2:19 PM
FPT 2/22/2021 2:19 PM
FWUpdate 2/22/2021 219 PM
FWUpdate_RS 2/22/2021 219 PM
ICC Tools 2/22/2021 2:19 PM
MEInfo 2/22/2021 219 PM
MEManuf 2/22/2021 2:19 PM
MEU 2/22/2021 219 PM
Figure 5

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

The Intel® DnX module can be found in CSME kit in the “dnx” folder

Intel Confidential

ntel)

11

3.2

3.2.1

3.2.2

3.2.2.1

3.2.2.1.1

12

®
l n te l Intel® DnX Requirements

How to enable Intel® DnX on the Platform

During Manufacturing or Before End-of-Manufacturing

Intel® DnX is enabled in the Image by default and all Intel® DnX operations such as
Image Recovery/Update or OEM Debug token injection using Intel® DnX are available to
use.

End-of-Manufacturing

If Intel® DnX is disabled in the fuse at the time of End-Of-Manufacturing, NO Intel® DnX
operations are available after End-Of-Manufacturing. This includes OEM Debug token
injection and Image Recovery/Programming operations.

Setting Intel® DnX Fuse

Enabling Intel® DnX operations after End-Of-Manufacturing

In-order for the Target to enter Intel® DnX Mode after End-of-Manufacturing, it is
important that the Intel® DnX fuse set to YES in the End-Of-Manufacturing process. This
can be done by using the Intel® FIT’s configuration as below.

Ml Intel ® Hash Image lool
File Build Help

D & %‘/ L;f WY Intel(R) ElkhartLake Chipset + | |EHL No Emulation Target Type SPI
Flash Layout
Flash Sefings ¥ DnX Image
Intel(R) ME Kernel
T —————— Parameter Value
ey Platform 1D 0x0 DnX Image aftribute. Ignored before FPFs lock. After FPFs lock, D
ey BuildEnabled No Should Intel FIT build a DnX image
Internal PCH Buses QutputFileName $DestDir\dnx.bin -
Pawer DnX image private sign... The path to the private key to use to sign the DnX image. This seftin
Debug
Compute Die Straps ¥ DnX Fuses
Flex/0
GPIO Parameter Value
F Update Image Build OEM Platform 1D 0x0 This setting allows OEMs to configure a Unique Platform ID into the

Intel Confidential

[] ®
Intel® DnX Requirements l n te l :

Figure 6

Thus,
1. Intel® FIT Tool-> Download and Execute-> DnxEnabled — set to ‘YES’
2. Then perform End-Of-Manufacturing using Intel® FPT

Intel® DnX technology is now enabled via the fuses and available to use.

Note : Certain Image recovery/Programming operations are prohibited after End-Of-
Manufacturing and can Only be enabled via OEM Debug token as shown in the table
below. OEM Debug Tokens are covered in the Intel® Secure Debug Token Guide
available in the CSME FW kits. Also refer to Section 5 for details in this document.

Use Case Intel® DnX Pre-End-Of- Post End-Of- Can OEM
Operation Manufacturing | Manufacturing | Debug
with FIT fuse token
DnXEnabled =1 | enable ?
Get Part ID for Allowed
Token tokens
Write/Inject Allowed Allowed N/A
Token token
Read token Allowed Allowed N/A
Token
Erase token Allowed Allowed N/A
Token
Read Boot Media Allowed Prohibited Yes
or Programming [Wele]qid=1q}
Provision/Write Allowed Prohibited Yes
IRl - Firmware image
Get NV Store Info Allowed Prohibited Yes
or Programming

OEM Debug Start Over to Allowed Allowed N/A
Token, Image reset the

Recovery or platform

Programming

OEM Debug Ping the device Allowed Allowed N/A
Token, Image for its ID

Recovery or

Programming

[EVNEGYEEA Download Allowed Allowed N/A
Gl el Recovery Module

Intel Confidential 13

3.2.2.2

14

®
l n tel Intel® DnX Requirements

Use Case Intel® DnX Pre-End-Of- Post End-Of- Can OEM
Operation Manufacturing | Manufacturing | Debug

with FIT fuse token
DnXEnabled =1 | enable ?
Allowed

[EFELERGERA . Open Capabilities Allowed
eI E i8] which are

prohibited

After image has been provisioned, the flash layout is unknown until the NVM device
initialization is performed. Therefore, until a global reset occurs, operations that require
knowledge of the layout (read/write/erase token) will return an error: 0x80000058
(ENVM_REQUIRES_REINIT).

Disabling Intel® DnX operations after End-Of-manufacturing

If the Intel® DnX Fuse is disabled in the Intel® FIT after End-of-Manufacturing, NO Intel®
DnX operations are available.

Wl Intel ® Flash Image Tool

File Build Help

L %) Y @y |Intel(R)Elkhartlake Chipset ~ EHL No Emulation ~ Target Type SPI -
El ‘
R ‘ ¥ DnX Image
Intel{F ME Kemel |
Platfarm Pratection ‘ B L Malue
m‘ Platform 1D 0x0 DnX Image attribute. Ignored before FPFs lock. After FPFs lock, Dn
m‘ BuildEnabled No Should Intel FIT build a DnX image
Internal PCH Buses ‘ OutputFileName $DestDir\dnx bin -
iner—‘ DnX image private sign. .. The path to the private key to use to sign the DnX image. This sefting
Debug ‘
W\ ¥ DnX Fuses
Flex1/0 |
GPIO ‘ Parameter Value
DnX Enabled DnX permanent enable/disable FPF
FW Update Image Build ‘ OEM Platform ID x0 This setting allows OEMSs to configure a Unique Platform ID into the &
Figure 7
Thus,

1. Intel® FIT Tool-> Download and Execute-> DnxEnabled — set to ‘NO’
2. Then perform End-Of-Manufacturing using Intel® FPT

All DnX operations are DISABLED as shown below after End-Of-Manufacturing.

Intel Confidential

Intel® DnX Requirements

Token

Token

Token

Token

or Programming
or Programming
Image Recovery
or Programming
OEM Debug
Token, Image
Recovery or
Programming
OEM Debug
Token, Image
Recovery or
Programming
Image Recovery
or Programming

Image Recovery
or Programming

Intel® DnX
Operation

Get Part ID for
tokens
Write/Inject
token

Read token

Erase token

Read Boot Media
Content
Provision/Write
Firmware image
Get NV Store Info

Start Over to
reset the
platform

Ping the device
for its ID

Download
Recovery Module
Open Capabilities
which are
prohibited

Pre-End-Of-
Manufacturing

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Firmware Settings - Important Note for Elk Hart lake

Intel® FIT Tool-> Download and Execute-> DnxEnabled is set to ‘NO’ by DEFAULT in CSE

Firmware Kits.

Post End-Of-
Manufacturing
with
DnXEnabled =0
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Can OEM
Debug
token
enable ?
N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Note : If Customer wants to have Intel® DnX operation enabled after End-Of-
Manufacturing, they MUST set it to ‘YES’ as described in section 3.1.2.1.1

Intel Confidential

15

[} ®
I n tel Intel® DnX Requirements

3.3

3.3.1

3.3.1.1

16

To keep Intel® DnX operations always available before End-Of-Manufacturing, please
always keep this setting as ‘YES’. Failing to do so will disable Intel® DnX fuse on their
platform and no Intel® DnX operations will be available. There are no functional changes
or restrictions for Intel® DnX related to this change, the intent is to reduce the attack
surface of platforms that are being delivered with default values by closing interfaces
that aren’tin use.

Customers that use Intel® DnX in manufacturing line *should* have “DnX enabled” set
to YES in their configuration along with settings in Section 3.3 —and then everything
works as usual.

How to build an Intel® DnX Image for Manufacturing/Refurbish use
cases

If customer is using Intel® DnX technology for Manufacturing or Refurbishing use case of
programming an image on the SPI or reading back an existing image or even writing a

new recovery/updated image on the SPI, then the Firmware image (IFWI) needs to be
built with this information.

If customer is using Intel® DnX technology only for OEM Debug tokens, this section can
be skipped.

Preparing the Target Platform to receive an Intel® DnX-enabled image

An Intel® DnX-enabled image is an image which will be programmed into the SPI using
Intel® DnX technology. The image must be signed with the appropriate Private key
owned by the OEM. This section lists some of the key points to note when building an
Intel® DnX-enabled image.

OEM Key Manifest

Elk Hart Lake platforms are manufactured with an OEM Key Manifest as part of the IFWI
image.

One of the fields in the OEM Key Manifest is for the Intel® DnX image. This should be
populated with the hash of the public key, matching the private key with which the
Intel® DnX-image will be signed. If there’s a mismatch of the keys, the Intel® DnX-image
will not be accepted by the target.

The string to look for Intel® DnX in the OEM Key Manifest is “OEMDnxIfwiManifest” as
shown below :

Intel Confidential

[] ®
Intel® DnX Requirements l n te l :

3.3.1.2

3.3.1.2.1

<VerS10NHOTI1lX Value="uxXuuuu" nelp Texl="Lnalcates Tne [QELI1l¥ Numper 1n tne version n
<VersionBuild value="0x0000" help text="Indicates the build number in the version num
<KeyManifestEntries>
<KeyManifestEntry>
<Usage value="OemDnxIfwiManifest" value_list="BootPolicyManifest,,6 iUnitBootLo
<HashBinary value="C:\Users\...\Desktop\..J\OpenSSL—WinSZ\bin\pubkey3khash.bi
</KeyManifestEntry>
<KeyManifestEntry>
<Usage value = "IshManifest" value_ ..
<Hash binary value = "hash to sign ISh"
/
</KeyManifestEntries>
iMKeyManifest>

Figure 8

An overview of the signing and manifesting process — how to generate a signing key and
how to fill in the OEM Key Manifest is described in “Elk Hart Lake Signing and
Manifesting Guide” included in the CSME Firmware kit.

This part of the process is like any other OEM owned and signed component such as
OEM token or ISH. The OEM owns the security of the private keys for any OEM owned
components.

Tool Settings — Intel® FIT

Use the Intel® FIT to create an Intel® DnX-enabled image.

Platform Protection

Intel ® Flash Image Tool
File Build Help

ol @ % [# & &) |IntelR)EkhartLake Chipset ~ | EHL N

Flash Layout

Flash Seftings Parameter Value
IntaltR) ME Kemel GuC Encryption Key 000000000000 O00O0...

Flatfarm Protection

¥ Hash Key Configuration for Bootguard

Integrated Clock Cantraller

Metwarking & Connectivity

Parameter Value
Internal PCH Buses OEM Public Key Hash 0000 00000000000
Power OEM Key Manifest Bin. ..
Debun Second OEM key hash 00 00 00 00 00 00 00 0.

Intel Confidential 17

3.3.1.2.2

18

Intel® DnX Requirements

Figure 9

Intel® FIT Tool-> Platform Protection-> Hash Key Configuration For Boot Guard -
> OemPublicKkeyHash — add public key has of the private key which will be used
to sign Intel® DnX IFWI image

Intel® FIT Tool-> Platform Protection-> Hash Key Configuration For Boot Guard -
> OEM Key Manifest Binary — path to OEM key Manifest

Download and Execute

Intel ® Flash Image Tool
File Build Help

D E} 3, %;-,- ? WY Intel(R) ElkhartLake Chipset ~ | EHL No Emulation Target Type SPI
Flash Layout
Flach Setings ¥ DnX Image
Intel(R) ME Kermel
e ———— Parameter Value
e g Platform ID 0x0 DnX Image atiribute. Ignored before FPFs lock. After FPFs lock, DnX will co
Natworking & Connactivity BuildEnabled No Should Intel FIT build a DnX image
Internal PCH Buses QutputFileName $DestDirtdnx bin -
Power DnX image private sign... The path to the private key fo use to sign the DnX image. This setting is only
Debug
Compute Die Straps ¥ DnX Fuses
Flex /0
GPIO Parameter Value
nd Execute DnX Enabled Yes DnX permanent enable/disable FPF
P Update Image Build OEM Platform ID 0x0 This sefting allows OEMs to configure a Unique Platform 1D into the base FPF
Figure 10

Please update below parameters under Intel® FIT tool to create IFWI image for Intel®
DnX flash process.

Intel® FIT Tool-> Download and Execute-> DnxEnabled — set to ‘Yes’

Intel® FIT Tool-> Download and Execute-> BuildEnabled —set to ‘Yes’

If Customer is using Intel® FIT tool to sign this Intel® DnX-image, Intel® FIT Tool-
> Download and Execute-> SigningKey — path to private key to be used. Check
settings in Section 3.3.1.2.3 as well in this case for signing tool details.

Intel® FIT Tool-> Download and Execute->Outputfilename — Path and name of
the Intel® DnX image

Intel® FIT Tool-> Download and Execute-> Platform ID- Platform ID that Intel®
DnX uses to verify image is suitable for the platform; before EOM flow, this
value can be left to default.

Intel Confidential

[] ®
Intel® DnX Requirements l n te l

e Intel® FIT Tool-> Download and Execute->OEM ID that Intel® DnX uses to verify
image is suitable for the platform; before EOM flow, this value can be left to
default.

3.3.1.23 Build Settings

The Build Settings is located on the top as shown with 1 in the figure below

Bl 1] @ Flach lmame T
. n B rlash age 100

o m

D &, %\) W '@ |Intel(R) ElkhartLake Chipset ~ || EHL No Emulation Target Type SPI

| Flash Layout
Build Settings X

Build Settings

¥ Image Build Settings

Parameter Value Help Text
Output Path $DestDiroutimage bin -

FWUpdate Qutput Path $DestDINFWUpdate bin -
Build FWUpdate With ... No -
Generate Intermediate ... Yes -
Enable Boot Guard war... Yes -
Enable Intel (R) Platfor... Yes -

Region Order 241 1=BI0S, 2=ME/IFWI, 4=PDR
IfwiBuildVersion 0x0 32-bit value to use as the IFVWI build version number
Redundancy Enabled false Enable Redundancy support for critical layout compo. .

Intel(R) Manifest Exten. 2 -
Signing Tool Path 3 -
Signing Tool 4 Disabled -

Descriptor Debug Signi. . _ This is the path to the private debug key used to sign t._.

Close

Figure 11

e Intel® FIT Tool -> Build->Build Settings-> Intel® Manifest Extension Utility Path —
path to Elkhart Lake Intel® MEU tool; available within Intel® CSE Kit. Shown in
#2

e If customer is using Intel tool to sign this Intel® DnX image,

Intel Confidential 19

20

Intel® FIT Tool -> Build-> Build Settings-> SigningToolPath — path to Open SSL
tool (from SSL installation directory) as shown in #3 above

e Select “Signing Tool” as OpenSSL if OEM is using Intel tool to sign the Intel® DnX

image. As shown in #4 above. Check section 3.3.1.2.1 as well for Private key
setting.

Note, customer can use their own tool to sign the Intel® DnX image as well. In which
case, select #4 in above figure as “Disabled”. This will not sign the Intel® DnX-image.

Intel Confidential

intel)

4 Usage

This chapter describes the set up for Intel® DnX and usage in both GUI and command
line operations.

The main operations using Intel® DnX are —
1. OEM Debug tokens

Intel® DnX technology is used to write the OEM debug token to the target platform.

The OEM debug token allows to re-enable debug features on the platform without
having to open the chassis. These include enabling CSME traces, enabling Debug
Interfaces like USb2.Dbc, passing BIOS payload to customer BIOS and OEM unlock
for IPs that are customer-debuggable.

In-order to also update the SPI after End-Of-Manufacturing, an OEM Debug token to
re-enable these Capabilities using the “Set Capabilities” knob of the OEM token is
required.

Full details of OEM Debug token are captured in the Secure Token’s Guide released
in the CSME kit. In this document, we only cover the below using Intel® DnX

technology.
a. ReadPartID
b. Inject the token
c. Erase the token after use
d. Read the token, if needed.

2. Image Recovery/Programming
During Manufacturing or Post End-of-Manufacturing

a. Program image on blank SPI
Re-flash new/recovery image in case of corrupted image
Re-flash recovery image on an End-Of-Manufacturing-enabled system
for Refurbish

Intel Confidential 21

(inteD)

4.1 Host and Target Setup
DnX Test Setup

Target Device Management Console
+ Enters DnX mode * Platform Flash Tool (PFT)
based on trigger * DnX module
* |FWIlimage

Figure 12

R

Management Console / Host A host that can be used to execute the Intel® DnX flows

Hardware Connection USB cable connection between the Remote Host to the
system under test

Intel® Platform Flash Tool Tool supporting Intel® DnX flows running on the Remote
(PFT) Host
Intel® DnX module binary Provided in the Intel® CSE FW kit. This binary is provided

as an input to the Intel® PFT.

Intel® DnX based IFWI image IFWI image to be flashed on the target system (Can be
created by Intel® FIT tool provided in the Intel® CSE)

OEM signed Debug token Token binary to be flashed on the target system (Can be
created by Intel® PFT tool provided in the Intel® CSE)

4.1.1 Intel® Platform Flash Tool (PFT) Overview

Intel® Platform Flash Tool supports GUI (Graphic User Interface) as well as CLI
(Command Line Interface) and runs on the Host.

This tool supports Intel® DnX flows and consumes Intel® DnX related input files like:
Intel® DnX module, secure token file to be flashed on the target system.

22 Intel Confidential

intel.

Please install this tool on Host system before executing Intel® DnX flows.

4.1.1.1 GUI

PFT tool is available within Intel® CSE FW Kit->Tools->DnX Tools. See example below

DnX Tools

intel(r) csme 15, .zip ' Intel(R) CSME 15. + Tools

Date modified: 2/20/2020 2:42 PM

mll= PlatformFlashTool_5.9.5.0 win32.exe
Size: 457 MB <+ 457 MB

Type: Application

D C-l Tiger Lake DnX User Guide.pdf Date modified: 2/4/2020 5:16 PM
| Type: Foxit Reader PDF Document Size: 1.03MB 9 984 KB

e Tiger Lake Secure Tokens User Guide.pdf Date modified: 2/4/2020 5:16 PM
Type: Foxit Reader PDF Document Size: .83 MB <% 1.59 MB

Figure 13
Run the installation package. Setup wizard will start. Click “Next” to complete the

installation.

This installation process installs Tools as well as necessary USB drivers along with it as
well.

Setup - Intel{R) Platform Flash Tool = =

(5

Welcome to the Intel(R) Platform
Flash Tool Setup Wizard

This will install Intel{R) Platform Flash Tool version 5.3.99.28
on your computer,

It is recommended that you dose all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Figure 14

Once PFT tool is installed on the Host:

e Make sure the target system is connected to the Host using USB cable.

Intel Confidential 23

4.1.1.2

24

e Make sure all input files required for Intel® DnX operation (e.g. Intel® DnX

module, token) are available on the Host.

e Ensure that the Intel® DnX module from the CSME Firmware kit is linked to the
Intel® PFT tool as shown below

Usage

ok Toien € | [General Settings. ? e
Manifest Extension;
Signing Device Connection. |
Flags o Edit flag:, 4 ¥ Force to use Dax mode (used for data retrieval, token provisioning/erasure)
Exiration (secondely [2992000sec. Firmuere DnX module: |C:/Usersf{Dovinloads/BKXP_0x1.bin .2
Type: m
ACEIETEOE [V Automatically get device data when generating tokens
Partin:
Add Part
=8 |
pormr |
Honce: [00000000 Fea
Tme s [occonons e
Pavioad:
Knobs:
ek | BootQurd and CPURn Contrd | e tospeyised. |
[V Actvated
o 80860001
volue (nen): [1 et
(>

e Make sure the target system is in Intel® DnX mode by checking the “Device

Manager” of the Host under “Universal Serial Bus device” should show Intel®

DnX device

CLI - Intel® DnX Firmware downloader

Intel® DnX Firmware Downloader is the name of the executable that provides command
line interface for Intel® DnX to interact with Intel® CSE firmware and perform different

Intel® DnX operations. This is also installed by the Intel® PFT at the path —

“C:\Program Files (x86)\Intel\Platform Flash Tool”

Intel Confidential

FE—
I

Pertld

Generate & Sign
Cick on bution belor
token:
reysie: [72
[~ Activate ant-co

8 Gener
write [Read [Erast
Vit 8 token to the

Erasc or Reod o tokey
Tolan 1D:

e read

" pore,

Usage

4.2

4.2.1

42.1.1

42.1.1.1

Share View

> ThisPC > OSDisk (C:) > Program Files (x86) * Intel > Platform Flash Tool

[0 Name Date modified Type - Size
;SFS Licenses 7/10/2019 2:38 PM File folder
modules 7/10/2019 238 PM File folder
platforms 7/10/2019 2:38 PM File folder
= [7zexe 12/20/2018 12:47 ... Application 574 KB
s [®] adb.exe 4/17/2019 459 AM Application 1,928 KB
@ AutoUpdater.exe 7/10/2019 552 PM Application 242 KB
@ cflasher.exe 7/10/2019 5:58 PM Application 6,258 KB
y Folders " dfu-util.exe 7/10/2019 5:52 PM Application 196 KB
ken [dnxFwDownloader.exe 7/10/2019 5:52PM Application 98 KB
. 7/10/2019 5:51 PM Application 828 KB
i ele e 7/10/2019552PM Application 157 KB

Figure 16

This tool supports serial number argument, however, does not provide USB port hence
less convenient for setups with multiple targets connected to one remote host at the
same time.

Note: target machine must already be in Intel® DnX mode when running Intel® DnX
operations (e.g. jumper, virgin storage)

Image Recovery/Programming

Using Intel® PFT GUI

Executing json file containing Intel® DnX commands
In-order to execute json file with Intel® DnX commands:

1. Choose “Flash” tab on the left panel of PFT
Use “Browse” button to load desired json file
3. Choose *.json file which has set of attributes defined to perform Intel® DnX use

cases.
4. Click on “Start Flash” Tab.

Note: User is expected to update this sample file with appropriate naming and path
details of Intel® DnX module and Intel® DnX IFWI binary.

Creating json file for flashing Intel® CSE IFWI through Intel® DnX

In-order to create json file supporting IFWI flash command via Intel® DnX from scratch,
follow those steps:

Open PFT GUI
1. Choose “Flash editor” tab on the left panel of PFT

Intel Confidential 25

26

Usage

2. Click “Reset Default” button if the flash editor contains any data

w

Set “Initial board state” to “DNX FW”

4. Set “Predefined sequence” to “Flash FW with DnX FW Downloader” and click

llAddll
5. After clicking “Add”, a new Window will open:

a. Inthe “Firmware DnX” field, select the path to the Intel® DnX module.
The Intel® DnX module is part of the IFWI kit, provided by Intel (Usually

named “dnxp_0x1.bin")

b. Inthe “Firmware Image” field, select the path to the IFWI image you

would like to flash

c. SetReset flags according to desired type of reset (see “Reset Target

Platform” section of this document for reference)
6. Click “Ok” and then “Save file”

7. After saving the file, you can load it in later time to flash the image or, you can
click the “Start to flash” button to flash the image right away

ca Mrm

Load file... Reload Clear

Savefie.. Resetdefsut | | Advanced editor

Current configuration: Default [0 command] [Default] = | [rifial board stabe: |DMCPW -
Commands
Tool i
(3 intel® Platform Fl.. ? X
1 Frmware DAl |GLR\I2450r0 IO _OxL.onl] [Browse...
Fumware mage®: |MHC_HW_COMMIT_DHGbin | | Browse... 6
Dowrioad FW flags*: [0]
Reset flags™ &
ol om

——

Predefined sequences: | Flash MW with Dni FW Covwnloader

Regster configuration

[orvemand fash | Cimar deviess

BT - e

+Using TMT APl Buld: Monday Ay OUth 2018, 10:42: 15 UTC
+ Total sze of downloaded flash fles: 0.00 bytes
+ Dk spasce avalable on drive C:f 1 71.20GB

+ Adb and fastboot binaries DK

+ Platform Flash Todl initalized successfidy

+ Ready to flash

: Ready to flash?

1 Rieady to flash!

BFQ : Ready to flash!

+ Ripady o flash

+ Ready to flash!

Intel Confidential

Usage

4.2.1.1.2

Figure 17

Executing different Intel® DnX operations defined in one json file

Operations can be run in GUI one-by-one by changing “Configuration” option for each
action in the drop-down menu. Also, can define one configuration that will run number
of operations one after another.

In the example below there are two Intel® DnX operations defined in one json:
“dnxFwDownloader” (IFWI write) and “startover” (reset). Those operations will run
under configuration name “default”, while “downloadfwos” command will also run
under configuration “ifwi_flash”.

"command" : "downloadfwos",
"description™ : "Flashing IFWI",
®flags™ : "S{flags_dcwnlcadfwcs}",

"fw dnx" : "${fw dnx file}",
"fw_image"” : "${fw_image file}",
"mandatory™ : true,

®restrict™ : [

"ifwi flash",
"default™

1.

“retry™ .2,

"timeout™ : ¢ i

"tool™ : "dnxFwDownloader™

b,

"command"” : "startover",

"description™ : "Start Over"”,
"flags" : "${flags_downloadfwos}",
"mandatory™ : true,
wrestrict™ & [

"defaulc”

1,

Below example demonstrates json with two Intel® DnX commands: Device ID and IFWI
write

Intel Confidential 27

28

)

ouks

Usage

IIJ Simics Console: viper.console.con - Input Enabled

|
[Intel® Platform Flash Tool 5.8.7.0
| Fle heo

| €:Wsers \Simics\Desktop \LKF_IFWI.json

Flash fle: |LKF_{FW1.json ~ | Configuration: |Deviceld | ¥ &

Platform: Intel DeX Device

®55\ Hardware: Intel DX Device hed on port 7/1 q 9@ 0% Flashing BIOS
= Status: OHX_PW 3 : 7190 148deblcABbdfedeSAdTOE

[[—— Sp—

flash!
04/06/18 00:43:16.068 INFO : [Port 7/1] Start flashing the flash configuration with dnx_fiw start state for d47d19dfS 148debfc48bdfede 54706
04/06/18 00:43:16.068 INFO : [Port 7/1] Starting fiash ...
04/06/18 00:43: 16,068 INFO = [Port 7/1] Running *dniF ~command " dfwos” —flags "0" —fw_dnx "C:\isers\Simics\Desktop\DHXP_0x 1.bin” —fin_image "C:\sers
\Simics! \dnx_jfiwi_UFS.bin™ command
04/06/18 00:43: 16,406 INFO : [Port 7/1) dnxFwDownloader version 1.0.0.0 (API: 13.30.0.7063(D8G)) buid time: Thersday March 29th 2018, 08:35:47 UTC
04/06/18 00:43: 16,421 INFO : [Port 7/1] DnX module version: 30
04/06/18 00:43:16.421 INFO : [Port 7/1] Starting DOWNLOADFWOS procedure
04/06/18 00:43:19,624 INFO : Flash file C: Uisers/Simics/Desktop/LKF_IFW1.json [DeviceID] loaded
04/06/18 00:43:19.624 INFO : Ready to flash! v

Figure 18

Select “Flash” tab on the eft panel of the GUI.

Select the json file using the “Browse” button. The json file validity is then
checked, and the flash operation can be started only if the selected flash file is
valid. The details of the loaded flash file are printed in the log area in the
DEBUG log level.

Once *.json file is selected and it is loaded successfully, under “Configuration”
drop down menu, there are 2 options — “Device ID” and “IFWI write”.

Select “Device ID” option.

Once configuration option is selected, click on “Start Flash” Tab.

On success, Host and Target communication is established and deviceid is
presented.

Intel Confidential

Usage

Flash fie: LKF_IFWILjson

|C:\U§=1§\Hast System\Desktop\LKF_IFWL.json

S5\ Hardware: Intel DX Device

Status: DHX_PW

Start to flash C:\Users\Host System\Desktop\LKF_IFWI.json [DevicelD]

* Configuration: DevicelD il

Piathorm: Intel DnX Device

P, d4F7d 19df8 1 48debfe8bdf
Commected 0 port 713 5|ty I

Dnix SN: - cHf7d1sdfesedebicasbdiedessdans)

[On-demand fiash | Clear devices

04/13/18 14:10:51.285 INFO
:51.285 INFO
:51.285 INFO

:10:51.285 INFO

Rt Il 0471315 14:10:51.285 INFO

: [Port 7/1] dnwDownloader version 1.0.0.0 (API: 13.30.0. 7063(D8G)) build time: Thursday March 29th 2018, 08:35:47 UTC ~
: [Port 7/1] Flags: 0

1 [Port 7/1] Starting 1D DEVICE procedure

: [Port 7/1] ID DEVICE procedure success

: [Port 7/1] Response flags: 0

: [Port 7/1] OEM platform ID: b0b808T

+ [Port 7/1] Unique platform ID: d4f7d 13478 148debfc4sbdfede54d7s

¢ [Port 7/1] Image errors: 00 00 00 00 00 0O 00 D 00 00 00 00

: [Port 7/1] Command *dnxFwDownloader -~command ddevice” ~flags "0 succeed
: [Port 7/1] Flash success (duration=00:00:01.507)

Intel® Platform Flash Tool

Figure 19

7. Now from configuration drop down menu, select “IFWI Write” option.

8. Click on “Start Flash” Tab.

9. This will initiate the IFWI flash process via Intel® DnX. (Can also add a command
to reset the target platform after successful IFWI flashing).

Intel Confidential 29

4.2.2

42.2.1

30

C:\Users'Host System'\DesktopLKF_IFWl.json
Flach fle: | LKF_IFWL.json * Configuration: TFWI Wirite -~ &£ @

Plabform: Intsl DnX Device
d4f7d 1901 48deblcaabdf

*5\ Hardware: Intal DoX Davies Connscted on port 71 Startto fiach [’ﬁl DR s 5.ccows (duration: 53
=l = ms)

Status oNx_Fr DX SNi d4F7d 190148 debicSbefadeS4ds

€sMisersfost System Deskiop/LKE_IFWLjson IFWI Wiite] [On-demand fiash Clear devices

m:_Micrasoft.bin™ command
513 INFO : [Port 7/1] dnuFuwDownioader version 1.0.0.0 (APT: 13.30.0. 7063(DBG]) buid time:
NFO ¢ [Port 7/1] DnX module version: 30

[Port 7/1] Starting DOWNLOADFWOS procedure

254 INFO : [Port 7/1] DOWNLOADFWOS procedure sucess

32 INFO ; [Port 7/1] Command *dnxFeDevmioader —cammand “downloadfwos” —~flags "0 —~fw_d
W Ydnx_Microsoft.bin® succeed

04/13/15 1% IO : [Port 7/1] Fiash success (duration=00:00:53.986)

Intel® Platform Flash Tool

Figure 20

Using Command Line

In general, Intel® DnX Firmware Downloader exe is used in the following syntax -

Usage:
dnxFwDownloader --command <command> <command-options>

Help Menu

dnxFwDownloader.exe --help command lists available options/commands supported

with this embedded tool.

Get storage device general info

Usage

In-order to get storage related information such as OEM PLAT ID (from IFPs), Platform
Unique ID, Intel® DnX Trigger, Image Error Values, ‘iddevice’ command shall be used.

Sample:

dnxFwDownloader.exe —--command iddevice

Intel Confidential

Usage

4.2.2.2

4.2.2.3

4.2.2.4

Get device detailed info

In-order to get storage related information such as number of SPI components and
capacity of each, ‘getcardinfo’ command shall be used.

Sample:

dnxFwDownloader.exe --command getcardinfo --fw dnx
DNXP 0x1l.bin --device spi --idx 0

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--device Boot device type (spi)
--idx device index[Optional]

Flash IFWI via Intel® DnX
In-order to flash IFWI image, ‘downloadfwos’ command shall be used.

Sample:

dnxFwDownloader.exe --command downloadfwos --fw dnx
DNXP 0x1l.bin --fw_image IFWI.bin --flags 0

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--fw_image path to the firmware image
--flags firmware download command flags[Optional]

Reset Target Platform

In-order to reset the platform, ‘startover’ command shall be used.

Sample:

dnxFwdownloader.exe —--command startover --flags 9
Where:

Intel Confidential

31

[] ®
I n tel Usage

Option Description

Firmware reset command flags. In the command line
appear in decimal display.

Comprises of following info (in binary):
Bit [1:0]: RESET_TYPE*

e 00: Reset Intel® DnX protocol (no Intel® CSE
/device reset) by cancelling currently active
command (if any) and wait for the next

command
e 01: Global reset
--flags e 10: Not supported

e 11: Not supported

Bit [3:2]: POST_RESET_STEPS

e 00: After reset, take normal boot path
(including honoring the Intel® DnX triggers
etc.)

e 01: After reset, enter OS INTEL® DNX flow

e 10: After reset, ignore optional Intel® DnX
triggers such as HW strap etc. and perform a
full host boot

e 11:Reserved

4.2.2.5 Read Boot media
In-order to read content from SPI, ‘readbootmedia’ command shall be used.
Sample:

dnxFwDownloader.exe --command readbootmedia --fw dnx
DNXP 0Ox1l.bin -path dump.bin --device spi --idx 0 --start O
--blocks 4096

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--path path to output file to dump the content

32 Intel Confidential

intel)

--device Boot device type (spi)

--idx device index[Optional]

Number of blocks to read where each block size:
1 block = 1kByte

--blocks
E.g. to read 32MB:

32MB =32768kB (in binary) = 32768 blocks

Returned data is in the ‘raw’ as read from the media and is not processed at all by Intel®
DnX module (i.e. no decryption etc. is performed, rather all data is returned as stored
on the media)

Make sure that output file location can be accessed for write, otherwise operation will

fail.
4.2.2.6 Open Intel® DnX capabilities post EOM
4.3 OEM Debug Tokens
43.1 Using Intel® PFT GUI

Make sure the Host and Target set up is correct as described in Section 4.1

43.1.1 Get Part ID

Once Intel® DnX is loaded on the tool as'shown in Section 4.1, simply click on “Get
Device Data” to auto populate Part ID. No further step for Part ID is needed.

Intel Confidential 33

Queiros, Pedro
Not sure is clear the implications of “dnx mode entering self reset”.
Would make sense to state something like. “EHL Fusa SKUs, SKU11 or SKU12, DNX operations are limited to a 3 mins, after that period of time, a processor global reset occurs and platform will leave DNX mode.”
Users might have to re-enter dnx mode and segment their operations to achieve the desired result.

Queiros, Pedro
I have a pickle with this statement and its location.
Here are my thoughts.

First customer will have to actually runs steps 4, 5, and any subsequent operation:
Provision FW Image
Get NV Store Info
Read Boot Media Content
Before the 3 mins timeout. Correct?

I think we need to make clear to the reader of the above.
Secondly this operations might not be possible within 3 mins. I think we agreed that write token erase token usecase is doable but image reflash would not be possible and defeatured. @Kalaiyappan, Periyakaruppan Kumaran am I correct? If so would make sense to make the three operations with an ** and add a note that might not be possible in EHL

Finally, I am missing in this document a description of a simple read PID + gen token + write token flow. Which in the case shall also have a not but should be possible by splitting the steps as discussed in the email

intel,

Usage

@ Intel ® Platform Flash Tool 5.10.0.0
File | Security Help

Figure 21

4.3.1.2 Inject/Write Token

[+] Me
Generate Token Payload Binary
& Sign Token Payload =
& Sign Current Token Edit flag Device selt
Fla: n Convert Binary Payload {.bin) to XML
n Convert Signed Binary (.tok) to XML —Partld—
Iﬁ Write Token to the device I
% General Settings Generate |
) User Guide
| Select Pe
Provision button, th
PartD: |
SPID-Keyll
Nonce: 00000000 |Hexa =]
Key Size:
Time base: [00000000 [Hexa x|
l_ Active
payioad: I
Knobs: Write [Re
OEMUnlock | 1SHGDBDebug | Boot Guardand CPURun Control | OEMBios Payload | DnX Capabilties ¢ P Wirite a tol
I~ Acvetes I

The tool has a “Write” button as shown below to write the token to the system.

Fle Security Help
OEM Unlock Token [

Manifest Extension:

Evpraton (ssconds)
Type:

Edit fiags. ..
Flash editor

Manufacturing lot:

Part ID:
Add Part D
Artifactory =B
¥ Part: |]
- Nonce: [o0000000 | [Hexa
Provision
Time base: 00000000 | [Hexa

OEM Unlock ISH GDB Debug EBootgaurd OEM Bios debug

[[] Activated

D: 80860002

Value (inHex): | 00000000 Edit...

[+] New Open

Save Save As

Device selection

& Sign

Select Permissions by clicking on ‘Certificate’
button, then click on button below to sign the
token:

B —

[activate Anti-Cloning

Write [Read [Erase

o write

Erase or Read a token from the device:

08/15/18 14:45:37.121 INFO _: O5 version detected: Windows 10 (x64)

Figure 22

34 Intel Confidential

Usage

4.3.1.3 Erase Token

intel,

Using the “Erase” button on the Ul, this tool can clear the token from the device. This
requires host to be connected to the target platform with a USB cable.

Intel® Platform Flash Tool 5.8.9.0

File Security Help

Flash editor

Flags:

Type:

Manufacturing lot:

OEM Unlock Token [E)

Manifest Extension:

Expration (second:

Edit flags...

CE—

Part ID:
Add PartID
Artifactory «~ 8
¥ Part ID: |
= Nonce: |Do000000 | lHexa
Provision
Time base: 00000000 | lHexa

Payload:

Knobs:

D:

OEM Unlock

[Activated

Value (in Hex):

I5H GDB Debug

80850002

00000000

Bootgaurd OEM Bios debug

Edit...

- O X
[+] New Open
Save Save As

Device selection

G te & Sign

Select Permissions by dicking on ‘Certificate’
button, then dick on button below to sign the
token:

R —

[] Activate Anti-Cloning

Generate & Sign Token

- Write / Read / Erase

Write a token to the device:

Erase or Read a token from the device:

b More...

4.3.1.4 Read Token

Figure 23

Note that the device selected to read the token from should show in the “Device

selection” box

Intel Confidential

35

4.3.2

43.2.1

36

®
l n tel Usage

2 Intel® Platform Flash Tool 589.0 — =

e u et

SHID: SRR HT

Noxe Gasallil e v

Tmebones. G002 e v

Pavioa:

Kok ‘T has been read rom e cacs zmsuly (C: sk
CEMUnu | M VISADwrde | IBNCERDShg | Dbl MO SeaseBet | A Fments b)

| hetwstes

w o

A o GODOXAND

139PM
8282018

o

Figure 24

Using Command Line

Make sure the Host and Target set up for Command Line is correct as mentioned in
Section 4.1

Read Part ID

In-order to get part ID specific to this token, ‘gettokenpid’ command shall be used.

Sample:

dnxFwDownloader.exe --command gettokenpid --fw dnx
DNXP 0xl.bin --flags 0

Where:

Option Description

--fw_dnx path to the Intel® DnX module binary
Slot number for anti-replay protection of
corresponding token:

--flags : &

e 0: No AR protection needed. Nonce is
stored in the temp storage in SRAM

Intel Confidential

(inteD)

e 1:Nonce generated is stored in first Nonce
slot

4.3.2.2 Write Token
In-order to write token, ‘writetoken’ command shall be used.

Sample:

dnxFwDownloader.exe --command writetoken --fw dnx
DNXP 0Ox1l.bin --token token_ to write.bin --slot 0

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--token path to the token
--slot Slot Index of the token
4.3.2.3 Erase Token

In-order to erase token, ‘erasetoken’ command shall be used.

Sample:

dnxFwDownloader.exe --command erasetoken --fw dnx
DNXP 0x1.bin --slot 0

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--slot Slot Index of the token
43.2.4 Read Token

In-order to read token, ‘readtoken’ command shall be used.

Sample:

dnxFwDownloader.exe --command readtoken --fw dnx
DNXP 0Ox1l.bin --path read token.bin --slot 0

Intel Confidential 37

Usage

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--path path to output file to dump the content of the token
—slot Slot Index of the token

4.3.3 Common error messages

Error Code

Detail

0x30003 - Device not found

If the INTEL® DNX device isn't available in
the device manager: Make sure you are
following the correct steps to enter INTEL®
DNX mode, power cycle your platform since
INTEL® DNX has a five minutes timeout (you
might need to disconnect the USB cable
when power cycling), check your USB cable
is ok and is connected to the correct ports,
check if any reworks are needed on your
platform.

If the INTEL® DNX device is available in the
device manager, then the API/Tool version
and the INTEL® DNX driver version used are
incompatible.

0x20000007 - Internal system error

This error is caused when using a non-
matching INTEL® DNX SW and INTEL® DNX
driver. Make sure you use the latest INTEL®
DNX driver and INTEL® DNX SW.

0x30000 - basic_ios::clear

This means there's either a syntax error or
the files given to the command don't exist or
are incorrect.

present

Error code: 0x80000000 - Media not

Boot device chosen by the hard strap is
different from the device issued in the
command. INTEL® DNX uses the boot device

38

Intel Confidential

Usage

Error Code

Detail

chosen by the hard strap, make sure strap
and command match.

0x80000008 - Invalid public key

This means your INTEL® DNX module
(DNXP_0x1.bin) is signed with the wrong
key. Usually this happens when trying to
load the debug signed INTEL® DNX module
on production platforms. You need to use a
production signed INTEL® DNX module on
production platforms.

Error code: 0x80000035 - Image and
descriptor mismatch

This happens when trying to flash a SPI IFWI
that has different regions than the IFWI
already flashed on the device. This flow isn't
supported. SPI INTEL® DNX only supports
flashing IFWIs that have the exact same
regions as the already flashed IFWI.

Error code: 0x80000039 - Invalid regions

This means your INTEL® DNX IFWI doesn't

match the NVM used. Usually this happens
when hard straps are set to one NVM (e.g.
SPI) and trying to flash an IFWI that is for a
different NVM (e.g. UFS).

Error code: 0x8000003a - Unsupported
storage device

Flash initialization failed. Check that your
flash is connected properly to your platform,
all the hard straps are set correctly, and you
have all the needed reworks.

Error code: 0x80000043 - Invalid image
layout

This means that the INTEL® DNX IFWI you

are trying to flash has an invalid layout. This
happens when using an INTEL® DNX module
that supports a new INTEL® DNX IFWI layout
and trying to flash an INTEL® DNX IFWI with
an older layout. If you see this error - match
the versions of Intel® FIT used to generate

Intel Confidential

39

40

ntel)

Usage

Error Code

Detail

the INTEL® DNX IFWI and the INTEL® DNX
module.

Error code: 0x80000045 - No DNX ifwi key
in oem key manifest

This means that the INTEL® DNX IFWI
created doesn't support INTEL® DNX since it
misses the INTEL® DNX IFWI usage in the
OEM key manifest. The INTEL® DNX IFWI
usage needs to be added to the OEM key
manifest in the IFWI.

0x80000058 Global reset is required to initialize the NVM
before operations requiring knowledge of
the layout (read/write/erase token) can be
executed

0x80000001 Executed command is not supported on this

boot media

Intel Confidential

[] ®
Opening Intel® DnX capabilities post EOM ‘ l n te l]

5 Opening Intel® DnX capabilities post EOM

As mentioned in Chapter 3, Section 3.22 that some Image recovery/update operations
are prohibited once the Intel® DnX Fuse is set at the End-Of-Manufacturing.

This section describes how to re-enable those features using OEM debug token only.
Full details on how to create and sign an OEM debug token are covered in Secure
Tokens Guide released in the CSME Firmware kit.

Table below lists all Intel® DnX capabilities and how they are affected by OEM:

Operation SOC_ConfigLock | SOC_Config Can be re-
is not set Lock is set | enabled through

OEM debug token

START-OVER Allowed Allowed N/A
ID Device (PING) Allowed Allowed N/A
Download Recovery Module Allowed Allowed N/A
Download OEM Key Manifest Allowed Allowed N/A
Get NV Store Info Allowed Prohibited Yes
Provision FW Image Allowed Prohibited Yes
Set Capabilities Allowed Allowed N/A
Get Token Part ID Allowed Allowed N/A
Read Token Allowed Allowed N/A
Write Token Allowed Allowed N/A
Erase Token Allowed Allowed N/A
Read Boot Media Content Allowed Prohibited Yes

Intel Confidential 41

Opening Intel® DnX capabilities post EOM

Flow to open prohibited post EOM Intel® DnX capabilities

5.1
1. Use Intel® PFT to generate new OEM secure token with “DnX Capabilities” knob
Set value of this knob according to the desired Intel® DnX capability
2. As mentioned in Section 3.3, prepare signed OEM KM containing:
a. Public key hash of private key used for signing OEM secure token
b. Public key hash of private key used for signing Intel® DnX Image (if IFWI
flashing will be done)
3. Use PFT to run Intel® DnX command to download OEM KM to the SRAM with
the Set Capabilities command
5.2 Preparing the OEM token for Intel® DnX capabilities using Intel®
PFT GUI
3 o 3 a
M riod Token B | New n
o ’z— .
i:tm(s«w) E«_
— |
Aad.Part‘ID
gy - ==
ime bse: [oroonan |
%unm | 1sHGDBDebug | BootGuardand CPURunControl | OEMBiosPaybad ~ DniXCapabiies | CSETraong | Enable Debuginterface | Cancel OEM Authentication |
[V Activated
= T
EEEEE v foooome | e,
[select the bits for Dnx Capabilities Token ? X
E ™ sito- perties | Bit 1 - Enabletw figuration | Bit 2 - EnableClearPlatf figuration | Bit3 - t [Bit4
cocel

Figure 25

Preparing the OEM token for Intel® DnX capabilities using Intel®
PFT CLI

Example of how to enable Intel® DnX capabilities knob inside OEM secure token using
xml inside PFT installation folder (oem_unlock_token_template_project.xml)

5.3

42 Intel Confidential

™1 ®
Opening Intel® DnX capabilities post EOM l n te l

5.4

<!--Set the desired expirati
] <manifest_extension type="21 i
<!-— Enter part_id, nonce and time base of your de
<part_id nonce="00000000" part_id="0x" time base=
</manifest_extension>

="1" payload_version="1" flags="0" expiration_seconds="3600" manufacturing_lot="0">

e
0000000"/>

80860002" data="0x00000001" activ:
0860030" data="0x00000002" activa
EM Bios debug" id="0x80860051" data="0x00000001" a
knob is activated>

w. The data is in hex>

ivated="1"/>

- bit 0>

a - bit 1>
<Enab. r mConfiguration - bit 2>
<Enab. tin ntent - bit 3>
<EnableRea gNvmContent - bit 4--

<knob name="DnX Capabilities" id="0x80860101" data="0x00000001f" activated="1"/>
- </payload
- </token>
-</tokens>

Figure 26

In this example data="0x0000001f” means that bits[4..0] = ‘Ob11111’, hence all Intel®
DnX capabilities are open for the Intel® DnX session where above token is valid.

Note: Intel® DnX capabilities that appear under bit[1] and bit[2] in DnX knob are
relevant for block boot media only, hence are not supported for SPI boot media and can
be ignored.

Downloading OEM Key Manifest and Set Capabilities

In-order to download OEM Key Manifest as part of the flow to open prohibited post
EOM Intel® DnX capabilities, ‘downloadoemkeymanifest’ command shall be used.

Sample:

dnxFwDownloader.exe --command downloadoemkeymanifest --key
OEM KM.bin --fw_dnx DNXP_Oxl .bin

Where:
Option Description
--fw_dnx path to the Intel® DnX module binary
--key Path to the OEM Key Manifest binary

In-order to set Intel® DnX capabilities enabled in OEM secure token as part of the flow

to open prohibited post EOM Intel® DnX capabilities, ‘setcapabilities’ command shall be
used.

Sample:

dnxFwDownloader.exe --command setcapabilities -—-
capabilities OEM UnlockToken.tok --fw dnx DNXP 0xl.bin

Intel Confidential 43

44

Where:

Opening Intel® DnX capabilities post EOM

Option

Description

--fw_dnx

path to the Intel® DnX module binary

--capabilities

Path to the OEM Secure Token with DnX capabilities knob
enabled and set to the desired value:

DnX capabilities knob options:

Bit O - EnableGetNvmProperties

Bit 1 — Not supported for SPI boot media
Bit 2 — Not supported for SPI boot media
Bit 3 - EnableWritingNvmContent

Bit 4 - EnableReadingNvmContent

Intel Confidential

References

6 References

ntel.

Document

Document No. / Location

Elkhart Lake Intel® CSE FW 15.40 POR

CDI# 604387

Intel® Signing and Manifesting Guide

CSME FW kit

Secure Tokens Guide

CSME FW kit

Elk Hart Lake External Design Specification
(EDS), Volume 1

RDC# 601458

Intel Confidential

45

	1 Introduction
	1.1 Terminology

	2 Intel® Download and Execute (Intel® DnX)
	2.1 Introduction
	2.2 Use Cases
	2.3 Triggers

	1 DnX flow
	1 1. DNX Trigger:
	1 a. ROM Detect empty Flash
	1 b. Corrupted Flash
	1 c. User Trigger via BIOS or Strap
	1 2. ROM enumerates USB and establish USB Comm. with the Host
	1 3. ROM DNX Logic establishes connection with the recovery app via USB
	1 4. ROM DNX logic downloads DNX module from recovery app to SRAM and authenticates it
	1 5. DNX Module performs DnX operation requested by user
	1
	1 Tools
	1 Following tools are applicable for DnX:
	1 Intel® PFT (Platform Flash Tool) – Intel implementation of DnX tool running on remote host computer. DnX module, config.xml and IFWI.bin are inserted to the target machine via this tool. Will be included in the Intel® CSE Kit for EHL platform.
	1 DnX Module - binary file signed by Intel. This file has the DnX logic Intel® CSE ROM will run. Will be included in the Intel® CSE kit for EHL Platform.
	1 Intel® FIT – can be used to create DnX based IFWI image. For more detail on how to create IFWI image for DnX, please refer to Intel® Bring up Guide in the Intel® CSE kit for EHL Platform.
	1 Intel® FPT - can be used to configure DnX fuse and close manufacturing on the platform. Will be included in the Intel® CSE kit for EHL Platform.
	3 High-Level Setup Detail for DnXIntel® DnX Requirements
	3.1 Tools and Files
	3.2 How to enable Intel® DnX on the Platform
	3.2.1 During Manufacturing or Before End-of-Manufacturing
	3.2.2 End-of-Manufacturing
	3.2.2.1 Setting Intel® DnX Fuse
	3.2.2.1.1 Enabling Intel® DnX operations after End-Of-Manufacturing

	1.1.1.1
	3.2.2.2 Disabling Intel® DnX operations after End-Of-manufacturing
	3.2.2.2.1 Firmware Settings - Important Note for Elk Hart lake

	3.3 How to build an Intel® DnX Image for Manufacturing/Refurbish use cases
	3.3.1 Preparing the Target Platform to receive an Intel® DnX-enabled image
	3.3.1.1 OEM Key Manifest
	3.3.1.2 Tool Settings – Intel® FIT
	3.3.1.2.1 Platform Protection
	3.3.1.2.2 Download and Execute
	3.3.1.2.3 Build Settings

	1
	4 Usage
	4.1 Host and Target Setup
	4.1.1 Intel® Platform Flash Tool (PFT) Overview
	4.1.1.1 GUI
	4.1.1.2 CLI - Intel® DnX Firmware downloader

	4.2 Image Recovery/Programming
	4.2.1 Using Intel® PFT GUI
	4.2.1.1 Executing json file containing Intel® DnX commands
	4.2.1.1.1 Creating json file for flashing Intel® CSE IFWI through Intel® DnX
	4.2.1.1.2 Executing different Intel® DnX operations defined in one json file

	4.2.2 Using Command Line
	1.1.1.1
	4.2.2.1 Get storage device general info
	1.1.1.1
	4.2.2.2 Get device detailed info
	4.2.2.3 Flash IFWI via Intel® DnX
	4.2.2.4 Reset Target Platform
	4.2.2.5 Read Boot media
	4.2.2.6 Open Intel® DnX capabilities post EOM

	4.3 OEM Debug Tokens
	4.3.1 Using Intel® PFT GUI
	4.3.1.1 Get Part ID
	4.3.1.2 Inject/Write Token
	4.3.1.3 Erase Token
	4.3.1.4 Read Token

	4.3.2 Using Command Line
	4.3.2.1 Read Part ID
	4.3.2.2 Write Token
	4.3.2.3 Erase Token
	4.3.2.4 Read Token

	1.1.1 To launch GUI interface, click on the Desktop icon which launches GUI interface or open it from Intel® PFT installation folder.
	1.1.1
	1.1.1 Go to the Security tab on the left.
	1.1.1 To inject a token
	1.1.1 Generate and Sign a new token or brows for an existing token to write into the device. For guidance on how to generate and sign secure token, see “Secure Token Guide”
	1.1.1 Select a device
	1.1.1 press button “Write” in “Write / Read / Erase” section of the GUI
	1.1.1 To Read or Erase a token
	1.1.1 Select a device
	1.1.1 press button “Read” / “Erase” in “Write / Read / Erase” section of the GUI
	1.1.1
	1.1.1
	1.1.1 Executing json file containing DnX commands
	1.1.1 In order to execute json file with DnX commands:
	1.1.1 Choose “Flash” tab on the left panel of PFT
	1.1.1 Use “Browse” button to load desired json file
	1.1.1 Choose *.json file which has set of attributes defined to perform DnX use cases.
	1.1.1 Click on “Start Flash” Tab.
	1.1.1
	1.1.1 Note: User is expected to update this sample file with appropriate naming and path details of DnX module and DNX IFWI binary.
	1.1.1 Creating json file for flashing Intel® CSE IFWI thru DnX
	1.1.1 In order to create json file supporting IFWI flash command via DnX from scratch, follow those steps:
	1.1.1 Open PFT GUI
	1.1.1 Choose “Flash editor” tab on the left panel of PFT
	1.1.1 Click “Reset Default” button if the flash editor contains any data
	1.1.1 Set “Initial board state” to “DNX FW”
	1.1.1 Set “Predefined sequence” to “Flash FW with DnX FW Downloader” and click “Add”
	1.1.1 After clicking “Add”, a new Window will open:
	1.1.1 In the “Firmware DnX” field, select the path to the DnX module. The DnX module is part of the IFWI kit, provided by Intel (Usually named “dnxp_0x1.bin”)
	1.1.1 In the “Firmware Image” field, select the path to the IFWI image you would like to flash
	1.1.1 Set Reset flags according to desired type of reset (see “Reset Target Platform” section of this document for reference)
	1.1.1 Click “Ok” and then “Save file”
	1.1.1 After saving the file, you can load it in later time to flash the image or, you can click the “Start to flash” button to flash the image right away
	1.1.1
	1.1.1
	1.1.1
	1.1.1 Executing different DnX operations defined in one json file
	1.1.1 It is possible to support number of DnX operations in one json file, each operation will appear as “command” when reviewing json file in text editor (see example of such json below). Operations can be run in GUI one-by-one by changing “Configura...
	1.1.1
	1.1.1 In the example below there are two DnX operations defined in one json: “dnxFwDownloader” (IFWI write) and “startover” (reset). Those operations will run under configuration name “default”, while “downloadfwos” command will also run under configu...
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1 Below example demonstrates json with two DnX commands: Device ID and IFWI write
	1.1.1
	1.1.1
	1.1.1 Select “Flash” tab on the eft panel of the GUI.
	1.1.1 Select the json file using the “Browse” button. The json file validity is then checked and the flash operation can be started only if the selected flash file is valid. The details of the loaded flash file are printed in the log area in the DEBUG...
	1.1.1
	1.1.1 Once *.json file is selected and it is loaded successfully, under “Configuration” drop down menu, there are 2 options – “Device ID” and “IFWI write”.
	1.1.1
	1.1.1 Select “Device ID” option.
	1.1.1 Once configuration option is selected, click on “Start Flash” Tab.
	1.1.1 On success, Host and Target communication is established and deviceid is presented.
	1.1.1
	1.1.1
	1.1.1 Now from configuration drop down menu, select “IFWI Write” option.
	1.1.1 Click on “Start Flash” Tab.
	1.1.1 This will initiate the IFWI flash process via DnX. (Can also add a command to reset the target platform after successful IFWI flashing).
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	4.3.3 Common error messages

	5 Opening Intel® DnX capabilities post EOM
	5.1 Flow to open prohibited post EOM Intel® DnX capabilities
	5.2 Preparing the OEM token for Intel® DnX capabilities using Intel® PFT GUI
	5.3 Preparing the OEM token for Intel® DnX capabilities using Intel® PFT CLI
	5.4 Downloading OEM Key Manifest and Set Capabilities

	6 References

