

Elkhart Lake OxM Debug Tokens Guide

Revision 1.3

March 2021

Intel Confidential

2 Intel Confidential User Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND
HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR
INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL
APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

User Guide Intel Confidential 3

Contents

Contents
Revision History .. 5

Terminology 6

1 Introduction .. 7
1.1 Overall Workflow ... 7
1.2 Choice of tools .. 7

1.2.1 Case 1: If Customer implements Intel® DnX 8
1.2.2 Case 2: If Customer hasn’t implemented Intel® DnX 10

1.3 Usage of Tools .. 11

2 Overview of OxM Debug Tokens ... 12
2.1 Introduction ... 12
2.2 Preparing the Platform to Accept OxM Debug Tokens 12

2.2.1 High Level Process .. 13
2.2.2 Detailed process (EOM) ... 14

2.3 General Signing FAQs & Recommendations ... 16
2.4 Token Features ... 17

2.4.1 Part ID ... 17
2.4.2 Flags .. 17
2.4.3 Debug Features.. 18

3 Creation and Signing of OxM Debug Tokens ... 22
3.1 Introduction ... 22
3.2 Token creation .. 22

3.2.1 Token Creation - Intel® PFT GUI .. 22
3.2.2 Token Creation - CLI ... 30

3.3 Signing .. 31
3.3.1 Manifest header ... 31
3.3.2 Signing token .. 34
3.3.3 Intel® PFT GUI .. 34
3.3.4 Intel® PFT CLI ... 35

4 Token Injection ... 36
4.1 Introduction ... 36
4.2 Using Intel® DnX .. 36

4.2.1 Intel® PFT - GUI .. 36
4.2.2 Intel® PFT - CLI ... 37

4.3 NO Intel® DnX ... 38
4.3.1 Intel® FPT ... 38
4.3.2 Stitching a Token into the Firmware Image 38

5 Erasing the Token .. 39
5.1 Using Intel® DnX .. 39

5.1.1 Intel® PFT - GUI .. 39
5.1.2 Intel® PFT - CLI ... 40

5.2 NO Intel® DnX ... 40
5.2.1 Intel® FPT .. 40

4 Intel Confidential User Guide

5.2.2 Re-flash a new image ... 40

6 Reading the Token ... 41
6.1 Using Intel® DnX .. 41

6.1.1 Intel® PFT – GUI ... 41
6.1.2 Intel® PFT - CLI ... 42

7 Debugging OxM Debug Token Injection ... 43

8 References .. 44

User Guide Intel Confidential 5

REVISION HISTORY

Revision
Number

Description Revision Date

0.7 Initial release, expected features to be ported from Tiger Lake June 2020

0.8 Updated revision to 0.8 August 2020

1.0 Updated revision to 1.0 for Beta January 2021

1.1 Updated revision to 1.1 for DAM knob addition and layout March 2021

6 Intel Confidential User Guide

TERMINOLOGY
Term Description

Intel® DnX Intel® Download and Execute

EOM End of Manufacturing

Intel® FIT Intel® Flash Image Tool

IBB Initial Boot Block

IBBL Initial Boot Block Loader

IFWI Integrated Firmware Image

ISH Integrated Sensor Hub

OBB OEM Boot Block

SUT System Under Test

OEM KM OEM Key Manifest

Intel® MSU Intel® Mobile Signing Utility

GUI Graphic User Interface

CLI Command Line Interface

SUT System Under Test (or Debug)

OxM Original (x) Manufacturer where “x” can be Equipment or Design

Introduction

User Guide Intel Confidential 7

1 Introduction
This document gives an overview of OxM Debug Tokens for Elk Hart Lake platforms.

The goal of this guide is to train the user to:

• Prepare the platform to work with OxM Debug Tokens
• Create OxM Debug Tokens
• Inject OxM Debug Tokens to the platform for debug
• Clear OxM Debug Token from platform after use.

1.1 Overall Workflow
Figure 1 shows the overall workflow to creating and injecting tokens into the platform.

Figure 1

Token is usually created for a specific platform to ensure the security of the platform.
The details of each step in the workflow is covered in the rest of this document.

1.2 Choice of tools
The following tools are used within this document :

• Intel® Platform Plash Tool (Intel® PFT)

o Read Part ID

Introduction

8 Intel Confidential User Guide

o Create & Sign Token (sign using Intel® MSU)

o Inject or Erase Token

• Intel® Flash Programming Tool (Intel® FPT)

o Read Part ID

o Inject or Erase Token

Intel® PFT tool is used for creating tokens and is located in the CSME FW kit in the
“Tools” -> “DnX Tools” folder.

Figure 2

Please also install the Intel® MSU for token signing on the host. All other tools
mentioned above are also available in the kit.

1.2.1 Case 1: If Customer implements Intel® DnX

1.2.1.1 Host and Target setup

Figure 3

Introduction

User Guide Intel Confidential 9

1.2.1.2 Intel® DnX module

Intel® DnX Module is a binary file signed by Intel. This file has the Intel® DnX logic that
the Intel® CSE ROM will run. The file will be included in the Intel® CSME FW kit under
the “dnx” folder.

This module should be linked to the Intel® PFT tool as shown below.

1.2.1.2.1 GUI

Figure 4

Make sure the target system is in Intel® DnX mode by checking the “Device Manager” of
the Host under “Universal Serial Bus device” should show Intel® DnX device

1.2.1.2.2 CLI – Intel® DnX Firmware Downloader

Intel® DnX Firmware Downloader is the name of the executable that provides command
line interface for Intel® DnX to interact with Intel® CSE firmware and perform different
Intel® DnX operations. This is also installed by the Intel® PFT at the path –

“C:\Program Files (x86)\Intel\Platform Flash Tool”

Introduction

10 Intel Confidential User Guide

Figure 5

1.2.2 Case 2: If Customer hasn’t implemented Intel® DnX

Figure 6

As seen, Intel® Platform Flash Tool is used for token creation, however Intel® Flash
Programming Tool is used for Part ID and token Injection operations.

Details on Intel® DnX technology are covered extensively in the Intel® DnX User Guide.
Briefly, from debug perspective, Intel® DnX technology is a closed chassis means to
inject a OxM Debug Token which can re-enable debug features like the ITH logs for
CSME or disabling Bootguard checks for debug.

Introduction

User Guide Intel Confidential 11

1.3 Usage of Tools

OxM Debug Engineer’s Host
Machine

OxM’ s SUT Used when?

Intel® Platform Flash Tool (PFT)

Intel® Mobile Signing Utility
(MSU)

Intel® DnX module from CSME
FW kit – Only if OxM platform is
enabling DnX feature.

Intel® Flash
Programming Tool
(FPT)

R&D or Manufacturing debug

Post EOM debug

Intel® MEU Tool

- R&D or Manufacturing for OEM
Key Manifest update

R&D or Manufacturing debug

Post EOM debug

-
Intel® FPT

Intel® FIT

R&D or Manufacturing debug

Post EOM debug

Overview of OxM Debug Tokens

12 Intel Confidential User Guide

2 Overview of OxM Debug Tokens

2.1 Introduction

OxM Debug Tokens are used in Elk Hart Lake platforms to allow debug operations
otherwise blocked after End-Of-Manufacturing.

The OxM Debug Token is authorized by OEMs to help them re-enable debug
capabilities such as

1. For OEM (starting Coffee Lake)

 OEM Unlock

– Debug OEM signed components: ISH GDB

 Disable OEM signed IP FW authentication during R&D

 OEM BIOS Payload to pass BIOS settings to avoid re-flashing debug BIOS

 Intel® BootGuard disable to debug OEM BIOS or debug non-booting
systems

2. Intel® CSME

 CSME ITH trace Enable/Disable for OEMs

3. Enable Debug Interfaces (USB2.Dbc or BSSB 4 wire)

 Enable Closed chassis debug (MEEN) without changing IFWI

4. CPU Run Control for debugging OS Applications

5. Enable DnX Flash Capabilities after EOM

Tokens are digitally signed so that the target platform knows to accept them – thus they
are secured and authorized. This chapter details the various details and is for
understanding the tokens better. For tool usage, refer to Chapter 3.

2.2 Preparing the Platform to Accept OxM Debug Tokens

OxM Debug Tokens must be digitally signed, to ensure that the target platform will
authorize them.

To “enable and use” OxM debug tokens on your platform is a 2-step process as shown
below.

Overview of OxM Debug Tokens

User Guide Intel Confidential 13

Figure 7

2.2.1 High Level Process

Assumption: At Manufacturing, the OEM is also signing other FW components like ISH
or Audio and is aware of OEM Key Manifest structure.

At Manufacturing, if the OEM does not wish to add any other components other than
OxM debug token, they still need to create the OEM Key Manifest which is basically a
structure to provide information about OEM signed components

High level flow is described below –

Overview of OxM Debug Tokens

14 Intel Confidential User Guide

Figure 8

2.2.2 Detailed process (EOM)

Note: At the time of End-Of-Manufacturing(EOM), the Public key-hash of the Private key
which will be used to sign OxM Debug tokens late is added to the OEM Key Manifest.
Failure to do so will result in invalid tokens which cannot be used.

1. Using Intel® MEU tool, create OEMKeyManifest.xml

Figure 9

OxMs assign a Private Key for the OxM debug token and keep it secure.

OxMs create a Public Key Hash of this Private Key for OxM debug token.

OxMs add this token Public Key Hash value in the OEMKeyManifest.xml
(create Key manifest using Intel(R) MEU tool), the token field is :

OEMDebugManifest

OxMs generate the corresponding OEMKeyManifest.bin file and sign it.

OxMs must build their IFWI by stitching this OEMKeyManifest.bin using Intel(R) FIT

At EOM (End of Manufacturing)/closemnf process, the public key hash value will be
burned into the HW FPFs permanently.

Overview of OxM Debug Tokens

User Guide Intel Confidential 15

2. Add a KeyManifestEntry with value “OEMDebugManifest” for OEM token.
3. Point to the Public Key hash binary generated for signing the token.

Note: This process is the same for adding any other OEM component to the manifest.
For tokens, note the new string. The signing process in detail is captured in the Intel®
Signing and Manifesting guide document in the FW kit.

4. Generate the OEMKeyManifest.bin using the Intel® MEU
5. Sign the OEMKeyManifest.bin
6. Add this signed OEMKeyManifest.bin and its public key hash to the full

image using Intel® FIT and build the image.

Figure 10

7. Finally, when EOM/closemanuf is done, the fuses will be burnt with the

relevant key hashes.

Note: As noted earlier OEM is responsible for the security of the key used to sign
token. Intel recommends –

• Maintain security of key with same security level applied to Intel® BootGuard or
secure boot keys

• Ensure only authorized personnel have access to key
• The token signing key is different from other keys used in the platform

Overview of OxM Debug Tokens

16 Intel Confidential User Guide

2.3 General Signing FAQs & Recommendations

1. Who owns the signing keys of OxM debug tokens ?

The Entity that owns burning Field Programable Fuses also owns other OxM
component keys like ISH/Audio and OxM debug tokens.

This can be the OEM or the ODM depending on the customer work model.

2. Can the keys used for OxM debug tokens be same as other components or

OEM Key Manifest?

The key ownership is entirely with the customers and they can choose to use the
same key or different keys. It is up to the customer as debug tokens are now an
OxM component. Intel recommends using different keys for different components
as mentioned earlier in this document.

3. How can ODM debug engineer request token to sign? How long would it take

to get a debug token signed?

This depends on the OEM-ODM secure work model. The OxM owns having a secure
and trusted mechanism for an authorized OxM debug engineer to request to sign an
OxM debug token.

4. What if OxM doesn’t put the debug tokens public key hash in the OEM Key

Manifest during Manufacturing or R&D ?

The above scenarios are quite possible. OxM can add the OxM Debug public key
hash later, if and only if an OEM Key manifest was present at the time of EOM. In
short, no OEM Key Manifest means no capability to add any entry to the OEM Key
Manifest later.

Note : Detailed information on OEM signing is captured in the Intel® Signing and
Manifesting guide, section 3.5

Overview of OxM Debug Tokens

User Guide Intel Confidential 17

2.4 Token Features

This section describes each of the Token’s properties and serves as a reading material.
For tool related features, go to Chapter 3.

2.4.1 Part ID

After End-Of-Manufacturing, if the OxM debug engineer wants to debug a specific
platform, they need to obtain the Part ID of this system. A token created for this system
cannot be used on another system. Thus, a Part ID is the basic requirement for creating
an OxM debug token. Since the Part ID is read from the system under debug, the OxM
debug engineer should have physical access to the SUT.

During Manufacturing, the OxM debug engineer can also use the OxM debug token to
enable debug features. This type of token need not be tied to a specific Part ID and can
be valid on multiple systems.

Note: The token is created and signed by using OxM’s secure signing mechanism by
an authorized OxM debug engineer. If there is a signature mismatch, the debug token
is simply invalid, it is ignored, and the platform remains in its original state before
injecting the token.

2.4.2 Flags

A OxM Debug Token can be “fine-tuned” with certain properties depending on the use-
case of the OxM debug engineer. This section explores the main options.

2.4.2.1 Expiration

An OxM debug engineer can time the token to expire after “x” number of seconds. This
feature is useful when the OxM debug engineer wants to secure the amount of time an
OxM debug token is active.

On the other hand, the OxM debug engineer can also create an OxM debug token that
does not expire at all. This type of feature is useful for long running stress tests or
validation cycles where an issue can happen after uncertain time.

If an OxM debug token with “No Expiration” and necessary debug features has been
stitched in the image that’s running in such a use case, then the token will be available
forever.

No expiry = forever token. The OxM debug engineer should consider erasing the token
as soon as debug is over.

Overview of OxM Debug Tokens

18 Intel Confidential User Guide

2.4.2.2 Anti-Replay

This feature allows the OxM debug engineer to protect from the re-use the same token
on the same SUT.

With Anti-Replay enabled, the OxM Debug Token will be invalidated when a Part ID is
read again or the system has been re-flashed, CMOS cleared or cold reset.

For best security, enable Anti-Replay and set the appropriate Expiration time.

2.4.2.3 Globally valid

As mentioned earlier, during Manufacturing, an OxM debug engineer can create, sign,
and inject a OxM Debug Token that is valid on multiple parts and is not tied to single
platform.

By enabling the Globally valid feature of the OxM Debug Token, this can be achieved.

Note that, once End-Of-Manufacturing/closemnf is done, a globally valid token is no
longer effective.

2.4.3 Debug Features

There are various debug features that can be enabled or disabled using an OxM debug
token. This section explores those options one by one.

2.4.3.1 OEM Unlock

On production systems, this feature allows the OxM to “unlock” their IPs for conducting
their debug. For example, PSE IP which is customized by the OxM’ s, can be unlocked for
trace and run control purposes.

Since the OxM debug token is signed by an authorized OxM debug engineer using
secure signing mechanism, only authorized OxM debug users will have access to this
operation. If the token verification fails, the system will continue to stay in its original
error state.

2.4.3.2 Disable Bootguard and enable CPU probe mode

The specific feature allows the OxM debug engineers to temporarily disable Bootguard
features and boot the failing system for conducting debug.

There are four fine tuning options available –
1. BootGuardDisabled
2. BootGuardNoEnforcement:
3. BootGuardNoTimeouts
4. BootGuardnoEnforcementAndTimeouts

Overview of OxM Debug Tokens

User Guide Intel Confidential 19

Subsequently, it also allows enabling CPU Probe mode for run control debug purposes.
This is equivalent to setting Disable CPU Debug (DCD) to 0.

Since the OxM debug token is signed by an authorized OxM debug engineer using
secure signing mechanism, only authorized OxM debug users will have access to this
operation. If the token verification fails, the system will continue to stay in its original
error state.

2.4.3.3 Enable Tracing

The OxM debug token can also enable “CSE Tracing” allowing the collection of ITH
debug logs by the OxM debug engineer.

Important Note:

Starting Tiger Lake, CSE ITH logs can ONLY be re-enabled on a production platform (
after End-Of-Manufacturing/closemanuf) using a debug token due to security
hardening of the CSME IP.

If the OxM has enabled OxM debug token feature on their platforms, this option will
allow them to collect ITH traces and attach to relevant CSE sightings or do initial triage
on their own.

If the OxM has NOT enabled the OxM debug token feature on their platforms, they
should contact their Intel debug representative for helping with ITH log collection.

OxM ITH logs are also now improved to be more intuitive for the OxM debug engineers
to do initial debug triage and help isolate issues faster. Trainings are available on Intel’s
customer training portal, please check with your Intel Customer Enablement
representative for more details.

2.4.3.4 OEM BIOS payload

The OxM debug token binary can carry a payload to the OEM BIOS allowing the OxM
debug engineer to configure these settings without having to re-build and re-flash a
debug BIOS.

For example, if the OxM debug engineer wants to unhide an usually hidden OxM BIOS
menu, the OxM debug engineer can select that in the OxM debug token.

Another example is enabling debug transports like DCI.OOB for DCI.OOB.USB2/3.Dbc or
DCI.OOB.BSSB-2 wire without re-building and re-flashing of the image on the SUT.

At the time of writing this document, the below options are supported using the 32-bit
OEM BIOS payload using various bit combinations. Detailed bit-wise description can be
found in the Intel® BIOS Writer’s Guide.

Overview of OxM Debug Tokens

20 Intel Confidential User Guide

Option name Description

ExposeDebugMenu [Bit 0] Expose debug options in production BIOS
menu. If debug options menu is exposed, this
setting does nothing.

StreamingTraceSink

[Bit 1:4]

Enable Debug Transports specifying Power
Controls

Directly maps to BIOS Debug Menu choices in
Intel Reference Code

NpkPolicy [Bit 5] Enable NPK

TraceEnable [Bit 6] Enable BIOS traces

Note : At the time of writing this document,
this bit is not supported. Please check an
updated version of this document.

JTAGC10PGDisable [Bit 7] Disable JTAG C10 power gate

USBOverCurrentOverride [Bit 8] Override USB OC configuration to allow VISA

Intel Reserved [Bit 9:15] Future Intel Use

OEM Available [Bit 16:31] OEM’s can use these bits as desired

2.4.3.5 Enable Debug Interface

This feature of the OxM debug token allows the authorized OxM debug engineer to re-
enable DCI.OOB.USB2.Dbc on the production locked platform without having to re-build
and re-flash the image on the SUT.

The assumption is that the OxM will not clear the USB2DbcEn Bit in their BIOS per Intel’s
recommendation.

2.4.3.6 Cancel OEM Authentication

This feature of the OxM debug token allows the OxM debug engineer to use “debug
signed” components on the platform instead of “production signed” only for debug
purposes (except BootGuard Key manifest and OEM Key manifest).

Overview of OxM Debug Tokens

User Guide Intel Confidential 21

2.4.3.7 DnX capabilities

If the OxM chooses to enable the Intel® DnX feature on their production (End-Of-
Manufacturing/closemanuf) platforms for Image recovery and re-flashing purpose.
Note, only OxM debug token operations are available after End-Of-Manufacturing.

Please refer to Intel® DnX User guide from the CSME kit for full details.

2.4.3.8 ISH GDB debug

This feature allows an authorized OxM debug engineer to do source level debug for the
OxM’ s ISH component. The possibilities of this option are currently being explored.

Note: If the OxM has specific requirements they would like to request, please contact
your Intel® Customer enablement representative.

Creation and Signing of OxM Debug Tokens

22 Intel Confidential User Guide

3 Creation and Signing of OxM Debug
Tokens

3.1 Introduction

In this section we discuss the other side of the Token Process Lifecyle, that is, actual
debug by the OxM’ s debug Engineer.

Figure 11

Assumptions:
• The OxM debug engineer has physical access to the SUT.
• The OxM debug engineer is authorized by the OxM to sign the OxM debug

token OR is authorized by the OxM to request to sign the OxM debug token.

3.2 Token creation

Intel® PFT allows to generate and sign the token on the click of a button which includes
the use of template for token creation.

3.2.1 Token Creation - Intel® PFT GUI

As shown in Figure 12, using the Intel® PFT, Click on the “New” button, and then select
the target platform, and OEM Unlock Token as the token template for an OEM Unlock
Token.

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 23

3.2.1.1 Configuring the settings

There are multiple options that can now be set for the token. Leave all of them with
defaults, except for the following:

3.2.1.1.1 Expiration

Set the time (in Seconds) you’d like the token to be valid. Default in the tool is 3 days.

Figure 12

Creation and Signing of OxM Debug Tokens

24 Intel Confidential User Guide

3.2.1.1.2 Flags

Figure 13

In the “Flags” section you can select either -
• Globally valid (pre-EOM only): This means that the token can be used on any

platform whose Public key hash matches that of the Private key of the token
and is not tied to a particular platform ID. Useful for pre-EOM debugging only.

Note: Once platform is post End of Manufacturing only part-specific token is accepted
i.e., only token with Part ID (PID) will work.

• No Anti-replay: Anti-Replay protection stops a token being re-used on the same
device after token has been cleared either by clearing RTC or re-flashing Image.
Selecting “No Anti Replay” allows the debugger to ignore nonce and replay the
token.
This option is only relevant for tokens tied to a particular platform ID.

• No expiration: This means that the token has no time limit.

Note: It is recommended to use to token with time expiration and Anti-replay flag.

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 25

3.2.1.1.3 Knobs

The Intel® Platform Flash Tool provides debug features as “Knobs” for the token. These
define what the token allows/disables on the platform.

You can check/uncheck the checkbox inside each tab to add the knob to the token, and
then edit the value (automatically) of the token by clicking the Edit button and selecting
from the radio buttons inside. The knobs available vary depending on the token being
created.

Figure 14

Knob Meaning

OEM Unlock

1. Allow an OEM to
2. Enable/Disable Unlock of OEM IPs
3. Enable DAM

See Figure 15

ISH GDB Debug Enable ISH GDB support. Please check with you Intel® ISH Customer
Enablement Representative for this

BootGuard and CPU
Run Control

Used for platforms that have Intel® Boot Guard enabled in IFP fuse at the
EOM. Allows to disable Intel® BootGuard for debug purposes and has the
following options -

BootGuardDisabled: Disable boot block verification process completely
and allow platform to boot.

BootGuardNoEnforcement: Disable Enforcement policy of boot block
verification process completely and allow platform to boot

BootGuardNoTimeouts: Disable Timeouts due to Intel® Boot Guard
failures allowing to debug :

1. ACM or BIOS related flows.
2. If the problem is the timer duration being too short or a problem

with ACM or BIOS itself

BootGuardnoEnforcementAndTimeouts: This is a combination of the
two features above.

Creation and Signing of OxM Debug Tokens

26 Intel Confidential User Guide

Knob Meaning

This option also clears Disable CPU Debug (DCD override to 0) allowing
for CPU Run control.

OEMBiosPayload OEM can pass 32-bit data to their BIOS. The tool will allow you to enable
these features via checkboxes to enable BIOS features like – Display
hidden menu, Enable ITH, Enable Debug interface and so on. Refer to the
Intel® BIOS Writers Guide for full information.

See Figure 16.

Note : Bit 6 is not supported at the time of writing this document. Please
check the newer version of the document, when available.

DnXCapabilities Re-enable Intel® DnX image recovery capabilities after EOM. Please refer
to the Intel® DnX User Guide for full information.

Cancel
OEMAuthentication

Cancel OEM IP signing verification to conduct more easy R&D of their FW
When this option is enabled in an OxM signed debug token, it disables
the FW authentication for ISH, CAVs and IPU FW.

Figure 15

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 27

Figure 16

3.2.1.2 Getting the Target’s Part ID

Part ID is only relevant on Post-EOM systems.

3.2.1.2.1 Using Intel® DnX - GUI

Check section 1.2 for Intel® DnX setup. For Part ID, click on “Get Device Data” as shown
below.

Creation and Signing of OxM Debug Tokens

28 Intel Confidential User Guide

Figure 17

3.2.1.2.2 Using Intel® DnX - CLI

Check section 1.2 for Intel® DnX setup. Launch a Command prompt to execute
“dnxFWDownloader.exe”

dnxFwDownloader.exe --command gettokenpid --fw_dnx
DNXP_0x1.bin --flags 0

Where:

Option Description

--fw_dnx path to the DnX module binary DnXP_0x1.bin from
CSME Firmware Kit

--flags

Slot number for anti-replay protection of
corresponding token:

0: No AR protection needed. Nonce is stored in the
temp storage in SRAM

1: Nonce generated is stored in first Nonce slot

These are described in section 3.3.1.3

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 29

3.2.1.2.3 NO Intel® DnX

Check Section 1.2 for the proper set up.

Launch the Intel® FPT tool runs on the target being debugged.

Operation Command Line

Get Part ID of the target platform FPT.exe –GETPID <file>

This will retrieve the part ID into a file.

Next, Copy this file to a storage device. Launch Intel® PFT on the Host and click on
“Browse” button as shown

Figure 18

If there are multiple Part IDs, you can use the “Add Part ID” button as shown

Creation and Signing of OxM Debug Tokens

30 Intel Confidential User Guide

Figure 19

3.2.2 Token Creation - CLI

To create the token, browse to the Intel® PFT’s installation folder and launch the file
tokens_list_<project_name>.xml

Figure 20

As shown above, set the token Flags as mentioned in section 3.3.1.1 like expiration,
anti-replay etc under “manifest extension” tab.

Note that the flags should be a hex value as described in the comment.

Also, choose the knobs that should be enabled for your debug purpose. Discussed in
section 3.3.1.1.3

As shown in example above, OEM Unlock, Bootguard and OEM BIOS debug are all
activated.

The “part id” can also be copied into this xml file after reading it using either of the
methods provided in Section 3.3.1.2

Intel® DnX capabilities knob is also filled in with data and is activated in this example.
For more information on this, please refer to the Intel® DnX User Guide.

Once the knobs are set, run the command

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 31

token-manager-tool-cli.exe -c tmt_cli_config_file.xml -g

 to generate the token. See snippets of sample output.

C:\Program Files (x86)\Intel\Platform Flash Tool> token-
manager-tool-cli.exe -c tmt_cli_config_file.xml -g
INFO : Intel(R) Token Manager Tool CLI v1.7.0-0 (built on
Friday February 22nd 2019, 08:25:57 UTC)
INFO : option 'c' used: config file for TMT CLI
INFO : XML config file to use: 'tmt_cli_config_file.xml'
INFO : Checking config file...
INFO : Checking 'commands' section...
INFO : Checking 'globalSettings' section...
INFO : Checking Local signing parameters...
WARNING: Signing keys local passphrase info not set in XML
config file!
. . .
. . .
INFO : Done!
INFO : Config file looks ok :-)
INFO : option 'g' used: generate the token binary
. . .
. . .
INFO : Output token payload file:
c:\TEMP\tmt_tmp_token_PAYLOAD.tok
INFO : Broxton token detected
INFO : [TmtApi] Token has been successfully generated to
c:\TEMP\tmt_tmp_token_PAYLOAD.tok
INFO : Done!
INFO : Token payload done:
'c:\TEMP\tmt_tmp_token_PAYLOAD.tok'
INFO : Bye!

3.3 Signing

3.3.1 Manifest header

Please also install the Intel® Mobile Signing Utility released in the kit for signing. Intel®
PFT works with this tool for signing, once installed.

For customers who don’t want to use Intel tools for signing, this step is used for test-
signing the token binary with the required Manifest header, which the customer can
sign later with actual private key that they own in their environment using their own
preferred signing method, similar to other OEM signed components.

Creation and Signing of OxM Debug Tokens

32 Intel Confidential User Guide

Note: Please contact your Intel Customer representative if you have any questions
regarding this step. Any mismatch of keys will cause the token to be discarded and
hence this step is critical.

3.3.1.1 Intel® PFT GUI

In-order to sign the tokens, the key and signing information should be entered into the
Intel® PFT tool under the “General settings” tab.

To create a password protected private key, using OpenSSL, using for example ‘foobar’
as the password, run the following command from the CLI:

openssl.exe genrsa -passout pass:foobar -out
privkey_pwd.pem 2048

Note: A token with key hash that doesn’t match value in OEM Key Manifest will not
work. Before you continue with token creation be sure the OEM key manifest is
updated. See section 2.2 “Preparing the Platform to Accept OxM Debug Tokens”

OpenSSL tool mentioned above is one of the tools that can be used to create a private
key and corresponding public key pair. Customers can have their own tool or method
to cover this.

As shown in Figure 21 below, Customers can enter the signing key information in the
PFT under “Security”-> Security Option -> General Settings

The “Key” field consists of the key file location and the “Password” is the password if it
was used to create the key as mentioned above.

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 33

Figure 21

3.3.1.2 Intel® PFT CLI

Signing key information can be updated in the tmt_cli_config.xml by browsing to the
Intel® PFT installation directory.

Figure 22

Under “signing_keys”:

type is local and can be set by entering 2

local_key is the path to the private key

local_passphrase is the password used for creating this key.

Creation and Signing of OxM Debug Tokens

34 Intel Confidential User Guide

Once the token is configured or the token payload binary created, the next step is to
sign the token with the signing keys

3.3.2 Signing token

If the information was already set per Section 3.3.1, this step will sign the token using
the saved Private key information.

If OEM doesn’t want to use Intel tool to sign the token with actual private key, this step
can be used to sign token with debug/test key. Signing gives full structure that is
acceptable by the FW.

Note: Do not skip this step. The token payload must have the correct Manifest
header. If you have any questions, please contact your Intel® Customer Enablement
representative.

The customer can then replace the debug key with actual private key using their own
tools. This step is similar to how Intel® MEU signs debug FW and then replaces debug
key with production actual key.

3.3.3 Intel® PFT GUI

After configuring the token settings and knobs from the template, generate and sign the
token using the “Generate and sign Token” button. Refer to Figure 23

Creation and Signing of OxM Debug Tokens

User Guide Intel Confidential 35

Figure 23

3.3.4 Intel® PFT CLI

Under the Intel® PFT’s installation directory launch the terminal to use the command
token-manager-tool-cli -c "tmt_cli_config_file.xml" -s

Token Injection

36 Intel Confidential User Guide

4 Token Injection

4.1 Introduction

Tokens can be injected into a platform using tools such as Intel® FPT or using Intel® DnX.
Some tokens can also be compiled into the firmware image, using Intel® FIT. The Intel®
PFT, used for creating tokens, can also be directly used to inject the token using Intel®
DnX, via a UI button.

4.2 Using Intel® DnX

Intel® PFT only supports Token injection within the tool using Intel® DnX technology.
Please check section 1.2 for more details. The target machine must be in Intel® DnX
mode.

4.2.1 Intel® PFT - GUI

The tool has a “Write” button as shown below to write the token to the system.

Figure 24

Token Injection

User Guide Intel Confidential 37

Figure 25

The token will be consumed and validated by the firmware on the next platform reset,
so the machine should be rebooted after injection. It will remain there until it is erased,
or the firmware is re-flashed, erasing the token.

4.2.2 Intel® PFT - CLI

Check section 1.2 for Intel® DnX setup. Launch a Command prompt to execute
“dnxFWDownloader.exe” and use ‘writetoken’ command

Sample:

dnxFwDownloader.exe --command writetoken --fw_dnx
DNXP_0x1.bin --token token_to_write.bin --slot 0

Where:

Option Description

--fw_dnx path to the DnX module binary
DnXP_0x1.bin from CSME Firmware Kit

--token path to the token

--slot Slot Index of the token

Token Injection

38 Intel Confidential User Guide

4.3 NO Intel® DnX

4.3.1 Intel® FPT

If customer doesn’t use Intel® DnX technology, the OEM Unlock Token can be injected
into a platform using Intel® FPT. This should be followed by a global reset.

The token will remain there until it is erased, or the firmware is re-flashed, erasing the
token.

Operation Command Line

Writes the token where the filename is the token
name

Fpt.exe -WRITETOKEN<file>

Fpt.exe -greset

Note that these APIs are unable to give any indication if the token passed validation or
not. However, this information can be collected via Intel® System Trace.

4.3.2 Stitching a Token into the Firmware Image

The OEM Unlock Token can be compiled directly into the firmware image when it is
built, using Intel® FIT. Use this step if you can re-flash the IFWI. Otherwise consider
either Intel® FPT or Intel® DnX

As shown in below Figure, this information is entered under the Debug tab, in the
Unlock Token field. An image prepared this way can be used for debug purposes but
should never be burned on production systems.

Figure 26

Erasing the Token

User Guide Intel Confidential 39

5 Erasing the Token
Tokens can be erased from the platform using the tools such as Intel® FPT or using
Intel® DnX.

5.1 Using Intel® DnX

Please check section 1.2 for details on the setup. The target machine must be in Intel®
DnX mode.

5.1.1 Intel® PFT - GUI

Using the “Erase” button on the UI, this tool can clear the token from the device.

Figure 27

Erasing the Token

40 Intel Confidential User Guide

5.1.2 Intel® PFT - CLI

Open a command prompt in to execute the “dnxFwDownloader.exe” and use
‘erasetoken’ command.

Sample:

dnxFwDownloader.exe --command erasetoken --fw_dnx
DNXP_0x1.bin --slot 0

Where:

Option Description

--fw_dnx path to the DnX module binary DnXP_0x1.bin
from CSME Firmware Kit

--slot Slot Index of the token

5.2 NO Intel® DnX

5.2.1 Intel® FPT

If customer doesn’t use Intel® DnX technology, the OEM Unlock Token can be injected
into a platform using Intel® FPT, running on the platform OS. This should be followed
with a global reset.

The token will remain there until it is erased, or the firmware is re-flashed, erasing the
token.

Operation Command Line

Delete the token for the token ID provided FPT.exe - ERASETOKEN<pid>

Fpt.exe -greset

Note that these APIs are unable to give any indication if the token passed validation or
not. However, this information can be collected via Intel® System Trace.

5.2.2 Re-flash a new image

Another option is to flash a completely new image without any OEM token binary which
was initially put as mentioned in Section 4.3.2

Reading the Token

User Guide Intel Confidential 41

6 Reading the Token

6.1 Using Intel® DnX

Please check section 1.2 for details on the setup. The target machine must be in Intel®
DnX mode.

Reading of token is currently only supported via Intel® DnX

6.1.1 Intel® PFT – GUI

Click on the “Read” button as shown below. The tool will ask to save this token with a
file name. Browse to the location where the tool should save this token to.

The device selected to read the token from should show in the “Device selection” box.

Figure 28

Reading the Token

42 Intel Confidential User Guide

6.1.2 Intel® PFT - CLI

Open a command prompt in this location to run the “dnxFWdownloader.exe” using
your OS Terminal and use ‘readtoken command.

Sample:

dnxFwDownloader.exe --command readtoken --fw_dnx
DNXP_0x1.bin --path read_token.bin --slot 0

Where:

Option Description

--fw_dnx path to the DnX module binary DnXP_0x1.bin
from CSME Firmware Kit

--path path to output file to dump the content of the
token

--slot Slot Index of the token

Debugging OxM Debug Token Injection

User Guide Intel Confidential 43

7 Debugging OxM Debug Token Injection
The OEM Unlock Token is only examined by firmware at system boot, and so the token
injection cannot return any failure codes.

If the token is failing to unlock the platform or enable other debug features as expected,
Intel® Trace Hub messages must be examined, as they indicate why a token was
rejected.

These messages are available using the Intel® System Studio tool available to download
via Intel website.

Example when OxM Debug token is rejected due to authentication problem –

Using Intel® Trace Hub messages on the SUT :

Example of a failure case -

"[RBE] Load Module index (2)" Normal

"RBE_EVT_TOK_TYPE - 0x3" Normal

"[RBE] Validate manifest type (1) of partition (4)"
 Normal

"[RBE] Token authentication failed - 36" Normal

"Reject secure token error 36" Normal

"[RBE] CSE Boot stall flow" Normal

"[RBE] Poll for boot stall done" Normal

References

44 Intel Confidential User Guide

8 References

Document Source

575021-575021-cnl-oem-secure-tokens-
ug-rev0p5.pdf

https://www.intel.com/content/www/us/en/design/resou
rce-design-center.html

PFT_Security_User_Guide.pdf Intel® Platform Flash tool

Intel® DnX User Guide

Intel® Signing and Manifesting Guide

CSME FW kit

Video explaining token creation/injection
and debug on Customer training portal
(use your log in detail)

https://techtraining.intel.com/ProjectTraining/Course/200
0234/

Intel® System studio https://registrationcenter.intel.com/

https://www.intel.com/content/www/us/en/design/resource-design-center.html
https://www.intel.com/content/www/us/en/design/resource-design-center.html
https://techtraining.intel.com/ProjectTraining/Course/2000234/
https://techtraining.intel.com/ProjectTraining/Course/2000234/
https://registrationcenter.intel.com/

	Revision History
	Terminology
	1 Introduction
	1.1 Overall Workflow
	1.2 Choice of tools
	1.2.1 Case 1: If Customer implements Intel® DnX
	1.2.1.1 Host and Target setup
	1.2.1.2 Intel® DnX module
	1.2.1.2.1 GUI
	1.2.1.2.2 CLI – Intel® DnX Firmware Downloader

	1.2.2 Case 2: If Customer hasn’t implemented Intel® DnX

	1.3 Usage of Tools

	2 Overview of OxM Debug Tokens
	2.1 Introduction
	2.2 Preparing the Platform to Accept OxM Debug Tokens
	2.2.1 High Level Process
	2.2.2 Detailed process (EOM)

	2.3 General Signing FAQs & Recommendations
	2.4 Token Features
	2.4.1 Part ID
	2.4.2 Flags
	2.4.2.1 Expiration
	2.4.2.2 Anti-Replay
	2.4.2.3 Globally valid

	2.4.3 Debug Features
	2.4.3.1 OEM Unlock
	2.4.3.2 Disable Bootguard and enable CPU probe mode
	2.4.3.3 Enable Tracing
	2.4.3.4 OEM BIOS payload
	2.4.3.5 Enable Debug Interface
	2.4.3.6 Cancel OEM Authentication
	2.4.3.7 DnX capabilities
	2.4.3.8 ISH GDB debug

	3 Creation and Signing of OxM Debug Tokens
	3.1 Introduction
	3.2 Token creation
	3.2.1 Token Creation - Intel® PFT GUI
	3.2.1.1 Configuring the settings
	3.2.1.1.1 Expiration
	3.2.1.1.2 Flags
	3.2.1.1.3 Knobs

	3.2.1.2 Getting the Target’s Part ID
	3.2.1.2.1 Using Intel® DnX - GUI
	3.2.1.2.2 Using Intel® DnX - CLI
	3.2.1.2.3 NO Intel® DnX

	3.2.2 Token Creation - CLI

	3.3 Signing
	3.3.1 Manifest header
	3.3.1.1 Intel® PFT GUI
	3.3.1.2 Intel® PFT CLI

	3.3.2 Signing token
	3.3.3 Intel® PFT GUI
	3.3.4 Intel® PFT CLI

	4 Token Injection
	4.1 Introduction
	4.2 Using Intel® DnX
	4.2.1 Intel® PFT - GUI
	4.2.2 Intel® PFT - CLI

	4.3 NO Intel® DnX
	4.3.1 Intel® FPT
	4.3.2 Stitching a Token into the Firmware Image

	5 Erasing the Token
	5.1 Using Intel® DnX
	5.1.1 Intel® PFT - GUI
	5.1.2 Intel® PFT - CLI

	5.2 NO Intel® DnX
	5.2.1 Intel® FPT
	5.2.2 Re-flash a new image

	6 Reading the Token
	6.1 Using Intel® DnX
	6.1.1 Intel® PFT – GUI
	6.1.2 Intel® PFT - CLI

	7 Debugging OxM Debug Token Injection
	8 References

